Document of dataset 8236

Dataset record

Type
GIS map dataset
title in English
Outputs of predictive distribution models of deep-sea elasmobranchs in the Azores EEZ (down to 2,000m depth) using Generalized Additive Models
Description in English

We used the most ecologically relevant candidate environmental predictors for explaining the spatial distribution of deep-sea elasmobranch in the Azores: depth, slope, northness, eastness, Bathymetric Position Index (BPI), nitrates, and near bottom currents. We merged existing multibeam data for the Azores EEZ with bathymetry data extracted from EMODNET (EMODnet Bathymetry Consortium 2018) to calculate depth values (down to 2000m). All variables were projected with the Albers equal-area conical projection centered in the middle of the study area and were rescaled using bilinear interpolation to a final grid cell resolution of 1.12 x 1.12 km (i.e., 0.012°). Slope, northness, and eastness were computed from the depth raster using the function terrain in the R package raster. BPI was derived from the rescaled depth with an inner radius of 3 and an outer radius of 25 grid cells using the Benthic Terrain Model 3.0 tool in ArcGIS 10.1. Nitrates were extracted from Amorim et al. (2017). Near-bottom current speed (m·s-1) average values were based on a MOHID hydrodynamic model application (Viegas et al., 2018) with an original resolution of 0.054°. Besides the environmental variables, we also included three operational predictors in the analysis: year, fishing effort (number of hooks) and gear type (longline LLA and LLB, and gorazeira).

 

Data layers produced

ProbPresence: This dataset contains the predicted probability of presence (Pp) of 15 deep-water shark and rays species in a 1000-hook bottom longline fishing set (type LLA) in the Azores, using a Generalized Additive Models (GAM) approach with binomial distribution and logit link function, through the implementation gam in the package mgcv. Raja clavata; Galeorhinus galeus; Dipturus batis; Leucoraja fullonica; Dalatias licha; Etmopterus spinax; Squaliolus laticaudus; Etmopterus pusillus; Deania profundorum; Deania calcea; Centrophorus squamosus; Centroscymnus owstonii; Centroselachus crepidater; Centroscymnus coelolepis; Etmopterus princeps.

ProbPresence_Error: This dataset contains the standard error associated with the predicted probability of presence (Pp) of 15 deep-water shark and rays species in a 1000-hook bottom longline fishing set (type LLA) in the Azores, using a Generalized Additive Models (GAM) approach with binomial distribution and logit link function, through the implementation gam in the package mgcv. Raja clavata; Galeorhinus galeus; Dipturus batis; Leucoraja fullonica; Dalatias licha; Etmopterus spinax; Squaliolus laticaudus; Etmopterus pusillus; Deania profundorum; Deania calcea; Centrophorus squamosus; Centroscymnus owstonii; Centroselachus crepidater; Centroscymnus coelolepis; Etmopterus princeps.

BinPresence_Kappa: This dataset contains the binary maps of the predicted probability of presence (Pp) of 15 deep-water shark and rays species in a 1000-hook bottom longline fishing set (type LLA) in the Azores, using a Generalized Additive Models (GAM) approach with binomial distribution and logit link function and a threshold that maximizes Kappa. Raja clavata; Galeorhinus galeus; Dipturus batis; Leucoraja fullonica; Dalatias licha; Etmopterus spinax; Squaliolus laticaudus; Etmopterus pusillus; Deania profundorum; Deania calcea; Centrophorus squamosus; Centroscymnus owstonii; Centroselachus crepidater; Centroscymnus coelolepis; Etmopterus princeps.

BinPresence_MSS: This dataset contains the binary maps of the predicted probability of presence (Pp) of 15 deep-water shark and rays species in a 1000-hook bottom longline fishing set (type LLA) in the Azores, using a Generalized Additive Models (GAM) approach with binomial distribution and logit link function and the maximization of the sum of sensitivity and specificity (MSS) threshold, which minimizes misclassification likelihoods of false negatives and false positives. Raja clavata; Galeorhinus galeus; Dipturus batis; Leucoraja fullonica; Dalatias licha; Etmopterus spinax; Squaliolus laticaudus; Etmopterus pusillus; Deania profundorum; Deania calcea; Centrophorus squamosus; Centroscymnus owstonii; Centroselachus crepidater; Centroscymnus coelolepis; Etmopterus princeps.

PredAbundance: This dataset contains the predicted abundance (Pa) of 6 deep-water shark and rays species in a 1000-hook bottom longline fishing set (type LLA) in the Azores, using a Generalized Additive Models (GAM) approach with negative binomial distributions and a log link, through the implementation of gam in the package mgcv. Etmopterus spinax; Deania profundorum; Raja clavata; Etmopterus pusillus; Deania calcea; Galeorhinus galeus.

PredAbundance_Error: This dataset contains the standard error associated with the predicted abundance (Pa) of 6 deep-water shark and rays species in a 1000-hook bottom longline fishing set (type LLA) the Azores, using a Generalized Additive Models (GAM) approach with negative binomial distributions and a log link, through the implementation gam in the package mgcv. Etmopterus spinax; Deania profundorum; Raja clavata; Etmopterus pusillus; Deania calcea; Galeorhinus galeus.

FinalAbundance: This dataset contains the final predicted abundance (Fpa) of 6 deep-water shark and rays species in a 1000-hook bottom longline fishing set (type LLA) in the Azores, using a Delta Generalized Additive Models (GAM) approach recommended for zero-inflated data. This approach involves using the Probability of presence and the presence-only data to predict species abundances (Pa) (as described in other datasets). The final predicted abundance values (Fpa) were computed by multiplying the Pp by the Pa. Etmopterus spinax; Deania profundorum; Raja clavata; Etmopterus pusillus; Deania calcea; Galeorhinus galeus.

Extent: West -37.479533; East -18.832939; North 44.355782; South 32.678347

 

Lineage

Occurrence data was collected from two types of surveys: 38 fishery-independent surveys on board of R/V Arquipélago and on-board observer data surveys from PNRD collection, CoralFISH and Discardless/MERCES/SPONGES programme. 

Environmental data: Bathymetric Position Index derived from Benthic Terrain Model 3.0 tool in ArcGIS 10.1 (Walbridge et al., 2018) using multibeam data for the Azores EEZ and bathymetry data extracted from EMODNET. Nitrates, phosphates, and silicates concentration (μmol⋅L− 1), dissolved oxygen (ml⋅L− 1) and percentage of oxygen saturation (%) near the ocean bottom were extracted from Amorim et al. (2017), which were rescaled from an original resolution of 0.008 degrees. The near-bottom temperature (◦C) and near-bottom current speed (m⋅s−1) average values were based on a MOHID hydrodynamic model application (Viegas et al., 2018).  Spearman’s coefficient of correlation and the Variation Inflation Factors (VIFs) were used to evaluate collinearity.

 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 862428 (MISSION ATLANTIC).

Abstract in English

We developed predictive distribution models of deep-sea elasmobranchs for up to 2000 m depth in the Azores EEZ and neighboring seamounts, from approximately 33°N to 43°N and 20°W to 36°W. Georeferenced presence, absence, and abundance data were obtained from scientific surveys and commercial operations reporting at least one deep-sea elasmobranch capture. A 20-year 'survey dataset' (1996-2017) was compiled from annual scientific demersal surveys using two types of bottom longlines (types LLA and LLB), and an 'observer dataset' (2004-2018) from observer programs covering commercial fisheries operations using bottom longline (similar to type LLA) and vertical handline ('gorazeira').

License
https://spdx.org/licenses/CC-BY-4.0.html
bibliographicCitation
González-Irusta, José Manuel; Fauconnet, Laurence; Das, Diya; Catarino, Diana; Afonso, Pedro; Viegas, Cláudia Neto; Rodrigues, Luís; Menezes, Gui M; Rosa, Alexandra; Pinho, Mário Rui Rilhó; Silva, Hélder Marques da; Giacomello, Eva; Morato, Telmo (2022): Outputs of predictive distribution models of deep-sea elasmobranchs in the Azores EEZ (down to 2,000m depth) using Generalized Additive Models. PANGAEA.

Temporal coverage

Temporal
Start date
1996-01-01
End date
2018-01-01

Geographical coverage

Spatial
A, Mid-Atlantic Ridge
A, North Atlantic

Thesaurus terms

Keyword
Biota
Data not evaluated
Deep sea
Deep-sea fisheries
GeoTIFF
Local
Metadata conformant
Natura 2000 sites (Habitats Directive)
No limitations to public access
Species distribution
WGS84 (EPSG:4326)

Taxonomic terms

Taxon keywords
Centrophoridae
Centrophorus squamosus
Centroscymnus coelolepis
Dalatias licha
Dalatiidae
Deania profundorum
Dipturus batis
Elasmobranchii
Etmopterus princeps
Etmopterus pusillus
Etmopterus spinax
Galeorhinus galeus
Leucoraja fullonica
Raja clavata
Somniosidae

Ownerships

creator
José Manuel González-Irusta
creator
Institute of Marine Research
creator
Laurence Fauconet
creator
Institute of Marine Research
creator
Diya Das
creator
Institute of Marine Research
creator
Diana Catarino
creator
Institute of Marine Sciences - OKEANOS
creator
Pedro Afonso
creator
Institute of Marine Research
creator
Cláudia Viegas
creator
Institute of Marine Research
creator
Luís Rodrigues
creator
Institute of Marine Research
creator
Gui Menezes
creator
Institute of Marine Research
creator
Alexandra Rosa
creator
Institute of Marine Research
creator
Mário Rui Rilhó Pinho
creator
Institute of Marine Sciences - OKEANOS
creator
Hélder Silva
creator
Institute of Marine Sciences - OKEANOS
creator
Eva Giacomello
creator
Institute of Marine Research
creator
Telmo Morato
creator
Department of Oceanography and Fisheries
contactPoint
Luís Rodrigues
contactPoint
Institute of Marine Research

Publication references

related reference
Based on this dataset /id/publication/350836

Projects

was generated by
MISSION ATLANTIC - Towards the Sustainable Development of the Atlantic Ocean: Mapping and Assessing the present and future status of Atlantic marine ecosystems under the influence of climate change and exploitation

Special collections

part of special collection
EMODNET

Document metadata

date created
2023-03-17
date modified
2024-11-28