Document of bibliographic reference 292838

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
BibLvlCode
AS
Title
16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer)
Abstract
Uncovering the complexities of trophic and metabolic interactions among microorganisms is essential for the understanding of marine biogeochemical cycling and modelling climatedriven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools for examining these complex interactions, although this remains challenging, as many microorganisms are difficult to isolate, identify and culture. We use two species of planktonic foraminifera from the climatically susceptible, palaeoceanographically important genus Neogloboquadrina, as ideal test microorganisms for the application of 16S rRNA gene metabarcoding. Neogloboquadrina dutertrei and Neogloboquadrina incompta were collected from the California Current and subjected to either 16S rRNA gene metabarcoding, fluorescence microscopy, or transmission electron microscopy (TEM) to investigate their species-specific trophic interactions and potential symbiotic associations. 53±99% of 16S rRNA gene sequences recovered from two specimens of N. dutertrei were assigned to a single operational taxonomic unit (OTU) from a chloroplast of the phylum Stramenopile. TEM observations confirmed the presence of numerous intact coccoid algae within the host cell, consistent with algal symbionts. Based on sequence data and observed ultrastructure, we taxonomically assign the putative algal symbionts to Pelagophyceae and not Chrysophyceae, as previously reported in this species. In addition, our data shows that N. dutertrei feeds on protists within particulate organic matter (POM), but not on bacteria as a major food source. In total contrast, of OTUs recovered from three N. incompta specimens, 83±95% were assigned to bacterial classes Alteromonadales and Vibrionales of the order Gammaproteobacteria. TEM demonstrates that these bacteria are a food source, not putative symbionts. Contrary to the current view that non-spinose foraminifera are predominantly herbivorous, neither N. dutertrei nor N. incompta contained significant numbers of phytoplankton OTUs. We present an alternative view of their trophic interactions and discuss these results within the context of modelling global planktonic foraminiferal abundances in response to high-latitude climate change.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:000423514700025
Bibliographic citation
Bird, C.; Darling, K.F.; Russell, A.D.; Fehrenbacher, J.S.; Davis, C.V.; Free, A.; Ngwenya, B.T. (2018). 16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer). PLoS One 13(1): e0191653. https://dx.doi.org/10.1371/journal.pone.0191653
Is peer reviewed
true
Access rights
open access
Is accessible for free
true

Authors

author
Name
Clare Bird
author
Name
Kate Darling
author
Name
Ann Russell
author
Name
Jennifer Fehrenbacher
author
Name
Catherine Davis
author
Name
Andrew Free
author
Name
Bryne Ngwenya

Links

referenced creativework
type
DOI
accessURL
https://dx.doi.org/10.1371/journal.pone.0191653

taxonomic terms

taxonomic terms associated with this publication
Neogloboquadrina

Document metadata

date created
2018-02-19
date modified
2018-02-19