Document of bibliographic reference 337331

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
BibLvlCode
AS
Title
Effect of pluronic block polymers and N-acetylcysteine culture media additives on growth rate and fatty acid composition of six marine microalgae species
Abstract
The efficiency of microalgal biomass production is a determining factor for the economic competitiveness of microalgae-based industries. N-acetylcysteine (NAC) and pluronic block polymers are two compounds of interest as novel culture media constituents because of their respective protective properties against oxidative stress and shear-stress-induced cell damage. Here we quantify the effect of NAC and two pluronic (F127 and F68) culture media additives upon the culture productivity of six marine microalgal species of relevance to the aquaculture industry (four diatoms-Chaetoceros calcitrans, Chaetoceros muelleri, Skeletonema costatum, and Thalassiosira pseudonana; two haptophytes-Tisochrysis lutea and Pavlova salina). Algal culture performance in response to the addition of NAC and pluronic, singly or combined, is dosage- and species-dependent. Combined NAC and pluronic F127 algal culture media additives resulted in specific growth rate increases of 38%, 16%, and 24% for C. calcitrans, C. muelleri, and P. salina, respectively. Enhanced culture productivity for strains belonging to the genus Chaetoceros was paired with an ~27% increase in stationary-phase cell density. For some of the species examined, culture media enrichments with NAC and pluronic resulted in increased omega-3-fatty acid content of the algal biomass. Larval development (i.e., growth and survival) of the Pacific oyster (Crassostrea gigas) was not changed when fed a mixture of microalgae grown in NAC- and F127-supplemented culture medium. Based upon these results, we propose that culture media enrichment with NAC and pluronic F127 is an effective and easily adopted approach to increase algal productivity and enhance the nutritional quality of marine microalgal strains commonly cultured for live-feed applications in aquaculture.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:000617400300002
Bibliographic citation
Sauvage, J.; Wikfors, G.H.; Li, X.; Gluis, M.; Nevejan, N.; Sabbe, K.; Joyce, A. (2021). Effect of pluronic block polymers and N-acetylcysteine culture media additives on growth rate and fatty acid composition of six marine microalgae species. Appl. Microbiol. Biotechnol. 105(5): 2139-2156. https://hdl.handle.net/10.1007/s00253-021-11147-8
Topic
Marine
Is peer reviewed
true
Access rights
open access
Is accessible for free
true

Authors

author
Name
Justine Sauvage
author
Name
Gary Wikfors
author
Name
Xiaoxu Li
author
Name
Mark Gluis
author
Name
Nancy Nevejan
Identifier
https://orcid.org/0000-0001-6566-4607
Affiliation
Universiteit Gent; Faculteit Bio-ingenieurswetenschappen; Vakgroep Dierwetenschappen en Aquatische Ecologie; Laboratorium voor Aquacultuur en Artemia Reference Center
author
Name
Koen Sabbe
Identifier
https://orcid.org/0000-0001-5163-5581
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Laboratorium voor Protistologie en Aquatische Ecologie
author
Name
Alyssa Joyce

Links

referenced creativework
type
Handle
accessURL
https://hdl.handle.net/10.1007/s00253-021-11147-8

Document metadata

date created
2021-05-17
date modified
2021-10-05