Document of bibliographic reference 345603

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
BibLvlCode
AS
Title
Network analysis based on unique spectral features enables an efficient selection of genomically diverse operational isolation units
Abstract
Culturomics-based bacterial diversity studies benefit from the implementation of MALDI-TOF MS to remove genomically redundant isolates from isolate collections. We previously introduced SPeDE, a novel tool designed to dereplicate spectral datasets at an infraspecific level into operational isolation units (OIUs) based on unique spectral features. However, biological and technical variation may result in methodology-induced differences in MALDI-TOF mass spectra and hence provoke the detection of genomically redundant OIUs. In the present study, we used three datasets to analyze to which extent hierarchical clustering and network analysis allowed to eliminate redundant OIUs obtained through biological and technical sample variation and to describe the diversity within a set of spectra obtained from 134 unknown soil isolates. Overall, network analysis based on unique spectral features in MALDI-TOF mass spectra enabled a superior selection of genomically diverse OIUs compared to hierarchical clustering analysis and provided a better understanding of the inter-OIU relationships.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:000622812900001
Bibliographic citation
Dumolin, C.; Peeters, C.; De Canck, E.; Boon, N.; Vandamme, P. (2021). Network analysis based on unique spectral features enables an efficient selection of genomically diverse operational isolation units. Microorganisms 9(2): 416. https://dx.doi.org/10.3390/microorganisms9020416
Is peer reviewed
true
Access rights
open access
Is accessible for free
true

Authors

author
Name
Charles Dumolin
Identifier
https://orcid.org/0000-0002-2691-0964
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biochemie en Microbiologie; Laboratorium voor Microbiologie
author
Name
Charlotte Peeters
Identifier
https://orcid.org/0000-0002-1891-4869
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biochemie en Microbiologie; Laboratorium voor Microbiologie
author
Name
Evelien De Canck
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biochemie en Microbiologie; Laboratorium voor Microbiologie
author
Name
Nico Boon
Identifier
https://orcid.org/0000-0002-7734-3103
Affiliation
Ghent University; Faculty of Bioscience Engineering; Department of Biotechnology; Center for Microbial Ecology and Technology
author
Name
Peter Vandamme
Identifier
https://orcid.org/0000-0002-5581-7937
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biochemie en Microbiologie; Laboratorium voor Microbiologie

Links

referenced creativework
type
DOI
accessURL
https://dx.doi.org/10.3390/microorganisms9020416

Document metadata

date created
2021-10-05
date modified
2021-10-05