Document of bibliographic reference 347737

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
BibLvlCode
AS
Title
Subtidal natural hard substrate quantitative habitat mapping: interlinking underwater acoustics and optical imagery with machine learning
Abstract
Subtidal natural hard substrates (SNHS) promote occupancy by rich benthic communities that provide irreplaceable and fundamental ecosystem functions, representing a global priority target for nature conservation and recognised in most European environmental legislation. However, scientifically validated methodologies for their quantitative spatial demarcation, including information on species occupancy and fine-scale environmental drivers (e.g., the effect of stone size on colonisation) are rare. This is, however, crucial information for sound ecological management. In this investigation, high-resolution (1 m) multibeam echosounder (MBES) depth and backscatter data and derivates, underwater imagery (UI) by video drop-frame, and grab sediment samples, all acquired within 32 km2 of seafloor in offshore Belgian waters, were integrated to produce a random forest (RF) spatial model, predicting the continuous distribution of the seafloor areal cover/m2 of the stones’ grain sizes promoting colonisation by sessile epilithic organisms. A semi-automated UI acquisition, processing, and analytical workflow was set up to quantitatively study the colonisation proportion of different grain sizes, identifying the colonisation potential to begin at stones with grain sizes Ø ≥ 2 cm. This parameter (i.e., % areal cover of stones Ø ≥ 2 cm/m2) was selected as the response variable for spatial predictive modelling. The model output is presented along with a protocol of error and uncertainty estimation. RF is confirmed as an accurate, versatile, and transferable mapping methodology, applicable to area-wide mapping of SNHS. UI is confirmed as an essential aid to acoustic seafloor classification, providing spatially representative numerical observations needed to carry out quantitative seafloor modelling of ecologically relevant parameters. This contribution sheds innovative insights into the ecologically relevant delineation of subtidal natural reef habitat, exploiting state-of-the-art underwater remote sensing and acoustic seafloor classification approaches.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:000727282500001
Bibliographic citation
Montereale Gavazzi, G.; Kapasakali, D.A.; Kerckhof, F.; Deleu, S.; Degraer, S.; Van Lancker, V. (2021). Subtidal natural hard substrate quantitative habitat mapping: interlinking underwater acoustics and optical imagery with machine learning. Remote Sens. 13(22): 4608. https://dx.doi.org/10.3390/rs13224608
Topic
Marine
Is peer reviewed
true
Access rights
open access
Is accessible for free
true

Authors

author
Name
Giacomo Montereale Gavazzi
Identifier
https://orcid.org/0000-0001-9599-2425
Affiliation
Koninklijk Belgisch Instituut voor Natuurwetenschappen; Operationele Directie Natuurlijk Milieu
author
Name
Danae Kapasakali
Affiliation
Koninklijk Belgisch Instituut voor Natuurwetenschappen; Operationele Directie Natuurlijk Milieu
author
Name
Francis Kerckhof
Affiliation
Koninklijk Belgisch Instituut voor Natuurwetenschappen; Departement Beheer van het Mariene Ecosysteem
author
Name
Samuel Deleu
Affiliation
Vlaamse overheid; Beleidsdomein Mobiliteit en Openbare Werken; Maritieme Dienstverlening en Kust; Afdeling Kust; Vlaamse Hydrografie
author
Name
Steven Degraer
Identifier
https://orcid.org/0000-0002-3159-5751
Affiliation
Koninklijk Belgisch Instituut voor Natuurwetenschappen; Operationele Directie Natuurlijk Milieu
author
Name
Vera Van Lancker
Identifier
https://orcid.org/0000-0002-8088-9713
Affiliation
Koninklijk Belgisch Instituut voor Natuurwetenschappen; Operationele Directie Natuurlijk Milieu

Links

referenced creativework
type
DOI
accessURL
https://dx.doi.org/10.3390/rs13224608

Document metadata

date created
2021-12-01
date modified
2022-01-17