Document of bibliographic reference 363808

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
BibLvlCode
AS
Title
BATMAN: A Brain-like approach for tracking maritime activity and nuance
Abstract
As commercial geospatial intelligence data becomes more widely available, algorithms using artificial intelligence need to be created to analyze it. Maritime traffic is annually increasing in volume, and with it the number of anomalous events that might be of interest to law enforcement agencies, governments, and militaries. This work proposes a data fusion pipeline that uses a mixture of artificial intelligence and traditional algorithms to identify ships at sea and classify their behavior. A fusion process of visual spectrum satellite imagery and automatic identification system (AIS) data was used to identify ships. Further, this fused data was further integrated with additional information about the ship’s environment to help classify each ship’s behavior to a meaningful degree. This type of contextual information included things such as exclusive economic zone boundaries, locations of pipelines and undersea cables, and the local weather. Behaviors such as illegal fishing, trans-shipment, and spoofing are identified by the framework using freely or cheaply accessible data from places such as Google Earth, the United States Coast Guard, etc. The pipeline is the first of its kind to go beyond the typical ship identification process to help aid analysts in identifying tangible behaviors and reducing the human workload.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:000947474600001
Bibliographic citation
Jones, A.; Koehler, S.; Jerge, M.; Graves, M.; King, B.; Dalrymple, R.; Freese, C.; Von Albade, J. (2023). BATMAN: A Brain-like approach for tracking maritime activity and nuance. Sensors 23(5): 2424. https://dx.doi.org/10.3390/s23052424
Topic
Marine
Is peer reviewed
true
Access rights
open access
Is accessible for free
true

Authors

author
Name
Alexander Jones
author
Name
Stephan Koehler
author
Name
Michael Jerge
author
Name
Mitchell Graves
author
Name
Bayley King
author
Name
Richard Dalrymple
author
Name
Cody Freese
author
Name
James Von Albade

Links

referenced creativework
type
DOI
accessURL
https://dx.doi.org/10.3390/s23052424

Document metadata

date created
2023-04-24
date modified
2023-04-24