Document of bibliographic reference 380903

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
BibLvlCode
AS
Title
Accelerated fragmentation of two thermoplastics (polylactic acid and polypropylene) into microplastics after UV radiation and seawater immersion
Abstract
To better understand the fate and assess the ingestible fraction of microplastics (by aquatic organisms), it is essential to quantify and characterize of their released from larger items under environmental realistic conditions. However, the current information on the fragmentation and size-based characteristics of released microplastics, for example from bio-based thermoplastics, is largely unknown. The goal of our work was to assess the fragmentation and release of microplastics, under ultraviolet (UV) radiation and in seawater, from polylactic acid (PLA) items, a bio-based polymer, and from polypropylene (PP) items, a petroleum-based polymer. To do so, we exposed pristine items of PLA and PP, immersed in filtered natural seawater, to accelerated UV radiation for 57 and 76 days, simulating 18 and 24 months of mean natural solar irradiance in Europe. Our results indicated that 76-day UV radiation induced the fragmentation of parent plastic items and the microplastics (50 - 5000 µm) formation from both PP and PLA items. The PP samples (48 ± 26 microplastics / cm2) released up to nine times more microplastics than PLA samples (5 ± 2 microplastics / cm2) after a 76-day UV exposure, implying that the PLA tested items had a lower fragmentation rate than PP. The particles’ length of released microplastics was parameterized using a power law exponent (α), to assess their size distribution. The obtained α values were 3.04 ± 0.11 and 2.54 ± 0.06 (-) for 76-day UV weathered PP and PLA, respectively, meaning that PLA microplastics had a larger sized microplastics fraction than PP particles. With respect to their two-dimensional shape, PLA microplastics also had lower width-to-length ratio (0.51 ± 0.17) and greater fiber-shaped fractions (16%) than PP microplastics (0.57 ± 0.17% and 11%, respectively). Overall, the bio-based PLA items under study were more resistant to fragmentation and release of microplastics than the petroleum-based PP tested items, and the parameterized characteristics of released microplastics were polymer-dependent. Our work indicates that even though bio-based plastics may have a slower release of fragmented particles under UV radiation compared to conventional polymer types, they still have the potential to act as a source of microplastics in the marine environment, with particles being available to biota within ingestible size fractions, if not removed before major fragmentation processes.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:001166246400001
Bibliographic citation
Niu, Z.; Curto, M.; Le Gall, M.; Demeyer, E.; Asselman, J.; Janssen, C.; Dhakal, H.N.; Davies, P.; Catarino, A.I.; Everaert, G. (2024). Accelerated fragmentation of two thermoplastics (polylactic acid and polypropylene) into microplastics after UV radiation and seawater immersion. Ecotoxicol. Environ. Saf. 271: 115981. https://dx.doi.org/10.1016/j.ecoenv.2024.115981
Topic
Marine
Is peer reviewed
true
Access rights
open access
Is accessible for free
true

Authors

author
Name
Zhiyue Niu
Identifier
https://orcid.org/0000-0001-7786-2803
Affiliation
Vlaams Instituut voor de Zee
author
Name
Marco Curto
author
Name
Maelenn Le Gall
author
Name
Elke Demeyer
Identifier
https://orcid.org/0000-0002-8335-3914
Affiliation
Centexbel - Gent
author
Name
Jana Asselman
Identifier
https://orcid.org/0000-0003-0185-6516
Affiliation
Ghent University; Blue Growth Research Lab
author
Name
Colin Janssen
Identifier
https://orcid.org/0000-0002-7781-6679
Affiliation
Universiteit Gent
author
Name
Hom Nath Dhakal
author
Name
Peter Davies
author
Name
Ana Isabel Catarino
Identifier
https://orcid.org/0000-0002-8796-0869
Affiliation
Vlaams Instituut voor de Zee
author
Name
Gert Everaert
Identifier
https://orcid.org/0000-0003-4305-0617
Affiliation
Vlaams Instituut voor de Zee

Links

referenced creativework
type
DOI
accessURL
https://dx.doi.org/10.1016/j.ecoenv.2024.115981

thesaurus terms

term
Fragmentation (term code: 53626 - defined in term set: CSA Technology Research Database Master Thesaurus)
Ultraviolet radiation (term code: 8836 - defined in term set: ASFA Thesaurus List)

Document metadata

date created
2024-01-15
date modified
2024-04-16