Document of bibliographic reference 392108

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
Type of document
Preprint
BibLvlCode
AS
Title
Aerosolization of micro- and nanoplastics via sea spray: Investigating the role of polymer type, size, and concentration, and potential implications for human exposure
Abstract
Micro- and nanoplastics (MNPs) can enter the atmosphere via sea spray aerosols (SSAs), but the effects of plastic characteristics on the aerosolization process are unclear. Furthermore, the importance of the transport of MNPs via these SSAs as a possible new exposure route for human health remains unknown. The aim of this study was two-fold: (1) to examine if a selection of factors affects aerosolization processes of MNPs, and (2) to estimate human exposure to MNPs via aerosols inhalation.A laboratory-based bubble bursting mechanism, simulating the aerosolization process at sea, was used to investigate the influence of MNP as well as seawater characteristics. To determine the potential human exposure to microplastics via inhalation of SSAs, the results of the laboratory experiments were extrapolated to the field based on sea surface microplastic concentrations and the volume of inhaled aerosols.Enrichment seemed to be influenced by MNP size, concentration and polymer type. With higher enrichment for smaller particles and denser polymers. Experiments with different concentrations showed a larger range of variability but nonetheless lower concentrations seemed to result in higher enrichment, presumably due to lower aggregation. In addition to the MNP characteristics, the type of seawater used seemed to influence the aerosolization process. Our human exposure estimate to microplastic via inhalation of sea spray aerosols shows that in comparison with reported inhaled concentrations in urban and indoor environments, this exposure route seems negligible for microplastics. Following the business-as-usual scenario on plastic production, the daily plastic inhalation in coastal areas in 2100 is estimated to increase but remain far below 1 particle per day.This study shows that aerosolization of MNPs is a new plastic transport pathway to be considered, but in terms of human exposure it seems negligible compared to other more important sources of MNPs, based on current reported environmental concentrations.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:001241154600001
Bibliographic citation
Lambert, S.; Vercauteren, M.; Catarino, A.I.; Li, Y.; Van Landuyt, J.; Boon, N.; Everaert, G.; De Rijcke, M.; Janssen, C.; Asselman, J. (2024). Aerosolization of micro- and nanoplastics via sea spray: Investigating the role of polymer type, size, and concentration, and potential implications for human exposure. Environ. Pollut. 351: 124105. https://dx.doi.org/10.1016/j.envpol.2024.124105
Topic
Marine
Is peer reviewed
true

Authors

author
Name
Silke Lambert
Affiliation
Ghent University; Blue Growth Research Lab
author
Name
Maaike Vercauteren
Identifier
https://orcid.org/0000-0002-7618-143X
Affiliation
Ghent University; Blue Growth Research Lab
author
Name
Ana Isabel Catarino
Identifier
https://orcid.org/0000-0002-8796-0869
Affiliation
Vlaams Instituut voor de Zee
author
Name
Yunmeng Li
Identifier
https://orcid.org/0000-0002-7660-1836
Affiliation
Ghent University; Blue Growth Research Lab
author
Name
Josefien Van Landuyt
Identifier
https://orcid.org/0000-0003-1611-1525
Affiliation
Ghent University; Faculty of Bioscience Engineering; Department of Biotechnology; Center for Microbial Ecology and Technology
author
Name
Nico Boon
Identifier
https://orcid.org/0000-0002-7734-3103
Affiliation
Ghent University; Faculty of Bioscience Engineering; Department of Biotechnology; Center for Microbial Ecology and Technology
author
Name
Gert Everaert
Identifier
https://orcid.org/0000-0003-4305-0617
Affiliation
Vlaams Instituut voor de Zee
author
Name
Maarten De Rijcke
Identifier
https://orcid.org/0000-0002-0899-8122
Affiliation
Vlaams Instituut voor de Zee
author
Name
Colin Janssen
Identifier
https://orcid.org/0000-0002-7781-6679
Affiliation
Ghent University; Blue Growth Research Lab
author
Name
Jana Asselman
Identifier
https://orcid.org/0000-0003-0185-6516
Affiliation
Ghent University; Blue Growth Research Lab

Links

referenced creativework
type
DOI
accessURL
https://dx.doi.org/10.1016/j.envpol.2024.124105

Document metadata

date created
2024-05-06
date modified
2024-12-11