Document of bibliographic reference 59973

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
BibLvlCode
AS
Title
Spatial variability in sediment oxygen consumption under winter conditions in a lagoonal system in New Caledonia (South Pacific)
Abstract
Sediment Oxygen Consumption (SOC) was investigated during a winter (Southern Hemisphere) cruise in the southwest lagoon of New Caledonia. Oxygen fluxes were measured at 11 sampling stations distributed along two coast to reef transects. Three different methods of flux measurements were used: diver-operated benthic chambers, laboratory incubation of sediment cores and oxygen microprofiles determinations. SOC values varied between 450 and 2250 μmol O2 m−2 h−1. The level of agreement between the three techniques strongly varied as a function of sediment type. Most of the SOC values from the grey sand zone in the middle part of the lagoon and the muddy bottoms of the bays did not show significant differences. A central station presenting a dense seagrass bed gave lower SOC determined by oxygen microprofiles compared to the two other methods. In coarse carbonated sands from the back reef area, SOC measured by in situ benthic chambers were higher than SOC measured by incubation techniques. This discrepancy could be explained by physical disturbance of the sediments, macroscale variability in benthic communities or technical efficiency of the sediment sampling device and probably by a combination of all three processes. Nevertheless, for the other sediment types that represented 85% of the lagoon bottoms, the results from the three techniques used for SOC determination were strongly convergent. Based on this assumption, it could be stated that the oxygen fluxes were essentially driven by microbial activity compared to biologically mediated vertical transport of solutes. The SOC values determined during this study were in agreement with budgets previously calculated for the lagoon. Regardless of the back reef area, spatial variability in SOC can be explained by the organic matter content of sediments which clearly showed a coast to reef gradient with higher organic carbon and nitrogen contents in the coastal sediments. The C/N ratios demonstrate the higher rate of freshly deposited organic matter near the coast compared to more central stations in the lagoon.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:000181026600003
Bibliographic citation
Grenz, C.; Denis, L.; Boucher, G.; Chauvaud, L.; Clavier, J.; Fichez, R.; Pringault, O. (2003). Spatial variability in sediment oxygen consumption under winter conditions in a lagoonal system in New Caledonia (South Pacific). J. Exp. Mar. Biol. Ecol. 285-286: 33-47. https://dx.doi.org/10.1016/S0022-0981(02)00518-X
Topic
Marine
Is peer reviewed
true

Authors

author
Name
Christian Grenz
author
author
Name
Guy Boucher
author
Name
Laurent Chauvaud
author
Name
Jacques Clavier
author
Name
Renaud Fichez
author
Name
Olivier Pringault

Links

referenced creativework
type
DOI
accessURL
https://dx.doi.org/10.1016/S0022-0981(02)00518-X

thesaurus terms

term
Coral reefs (term code: 1885 - defined in term set: ASFA Thesaurus List)
Mineralization (term code: 5247 - defined in term set: ASFA Thesaurus List)
Organic matter (term code: 9722 - defined in term set: ASFA Thesaurus List)

Other terms

other terms associated with this publication
Oxygen fluxes

Document metadata

date created
2004-04-30
date modified
2020-09-16