Document of bibliographic reference 368260

BibliographicReference record

Type
Bibliographic resource
Type of document
Journal article
BibLvlCode
AS
Title
Structurally stable but functionally disrupted marine microbial communities under a future climate change scenario: Potential importance for nitrous oxide emissions
Abstract
The blue mussel Mytilus edulis is a widespread and abundant bivalve species along the North Sea with high economic and ecological importance as an engineer species. The shell of mussels is intensively colonized by microbial organisms that can produce significant quantities of nitrous oxide (N2O), a potent greenhouse gas. To characterize the impacts of climate change on the composition, structure and functioning of microbial biofilms on the shell surface of M. edulis, we experimentally exposed them to orthogonal combinations of increased seawater temperature (20 vs. 23 °C) and decreased pH (8.0 vs. 7.7) for six weeks. We used amplicon sequencing of the 16S rRNA gene to characterize the alpha and beta diversity of microbial communities on the mussel shell. The functioning of microbial biofilms was assessed by measuring aerobic respiration and nitrogen emission rates. We did not report any significant impacts of climate change treatments on the diversity of mussel microbiomes nor on the structure of these communities. Lowered pH and increased temperature had antagonistic effects on the functioning of microbial communities with decreased aerobic respiration and N2O emission rates of microbial biofilms in acidified seawater compared to increased rates in warmer conditions. An overriding impact of acidification over warming was finally observed on N2O emissions when the two factors were combined. Although acidification and warming in combination significantly reduced N2O biofilm emissions, the promotion of aquaculture activities in coastal waters where shellfish do not normally occur at high biomass and density could nonetheless result in unwanted emissions of this greenhouse gas in a near future.
WebOfScience code
https://www.webofscience.com/wos/woscc/full-record/WOS:001102898000001
Bibliographic citation
Dairain, A.; Voet, H.; Vafeiadou, A.-M.; De Meester, N.; Rigaux, A.; Van Colen, C.; Vanaverbeke, J.; Moens, T. (2024). Structurally stable but functionally disrupted marine microbial communities under a future climate change scenario: Potential importance for nitrous oxide emissions. Sci. Total Environ. 907: 167928. https://dx.doi.org/10.1016/j.scitotenv.2023.167928
Topic
Marine
Is peer reviewed
true

Authors

author
Name
Annabelle Dairain
Identifier
https://orcid.org/0000-0003-4513-155X
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Onderzoeksgroep Mariene Biologie
author
Name
Helena Voet
Identifier
https://orcid.org/0000-0003-2399-7141
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Onderzoeksgroep Mariene Biologie
author
Name
Anna-Maria Vafeiadou
Identifier
https://orcid.org/0000-0003-1858-027X
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Onderzoeksgroep Mariene Biologie
author
Name
Nele De Meester
Identifier
https://orcid.org/0000-0003-0853-160X
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Onderzoeksgroep Mariene Biologie
author
Name
Annelien Rigaux
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Onderzoeksgroep Mariene Biologie
author
Name
Carl Van Colen
Identifier
https://orcid.org/0000-0002-9307-4484
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Onderzoeksgroep Mariene Biologie
author
Name
Jan Vanaverbeke
Identifier
https://orcid.org/0000-0003-2488-8609
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Onderzoeksgroep Mariene Biologie
author
Name
Tom Moens
Identifier
https://orcid.org/0000-0001-6544-9210
Affiliation
Universiteit Gent; Faculteit Wetenschappen; Vakgroep Biologie; Onderzoeksgroep Mariene Biologie

Links

referenced creativework
type
DOI
accessURL
https://dx.doi.org/10.1016/j.scitotenv.2023.167928

taxonomic terms

taxonomic terms associated with this publication
Bivalvia

Document metadata

date created
2023-10-23
date modified
2024-05-21