Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [257078]
Photopolarization of Fucus zygotes is determined by time sensitive vectorial addition of environmental cues during axis amplification
Bogaert, K.A.; Beeckman, T.; De Clerck, O. (2015). Photopolarization of Fucus zygotes is determined by time sensitive vectorial addition of environmental cues during axis amplification. Front. Plant Sci. 6: 8 pp. dx.doi.org/10.3389/fpls.2015.00026
In: Frontiers in Plant Science. Frontiers Media: Lausanne. e-ISSN 1664-462X, more
Peer reviewed article  

Available in  Authors 

Keywords
    Fucus Linnaeus, 1753 [WoRMS]
    Marine/Coastal
Author keywords
    Fucus; polarization; asymmetrical cell division; positional information;Brown algae; intrinsic factors; embryogenesis; patterning

Authors  Top 

Abstract
    Fucoid zygotes have been extensively used to study cell polarization and asymmetrical cell division. Fertilized eggs are responsive to different environmental cues (e.g., light, gravity) for a long period before the polarity is fixed and the cells germinate accordingly. First, it is commonly believed that the direction and sense of the polarization vector are established simultaneously as indicated by the formation of an F-actin patch. Secondly, upon reorientation of the zygote, a new polar gradient is formed and it is assumed that the position of the future rhizoid pole is only influenced by the latter. Here we tested these two hypotheses investigating photopolarization in Fucus zygotes by reorienting zygotes 90 degrees relative to a unilateral light source at different time points during the first cell cycle. We conclude that fixation of direction and sense of the polarization vector is indeed established simultaneously. However, the experiments yielded a distribution of polarization axes that cannot be explained if only the last environmental cue is supposed to determine the polarization axis. We conclude that our observations, together with published findings, can only be explained by assuming imprinting of the different polarization vectors and their integration as a vectorial sum at the moment of axis fixation. This way cells will average different serially perceived cues resulting in a polarization vector representative of the dynamic intertidal environment, instead of betting exclusively on the perceived vector at the moment of axis fixation.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors