Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [295713]
Pattern mining for learning typical turbine response during dynamic wind turbine events
Feremans, L.; Cule, B.; Devriendt, C.; Goethals, B.; Helsen, J. (2017). Pattern mining for learning typical turbine response during dynamic wind turbine events, in: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 37th Computers and Information in Engineering Conference. pp. 1-9. https://dx.doi.org/10.1115/DETC2017-67910
In: (2017). ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 37th Computers and Information in Engineering Conference. ASME: New York. ISBN 978-0-7918-5811-0. , more

Available in  Authors 
Document type: Conference paper

Keyword
    Marine/Coastal

Authors  Top 
  • Feremans, L.
  • Cule, B.
  • Devriendt, C., more
  • Goethals, B.
  • Helsen, J., more

Abstract
    Maintenance costs are a main cost driver for offshore wind energy. Prediction of failure and particularly failure understanding can help to bring these costs down significantly. Since the wind turbine is subjected to a large number of dynamic events it is important to fully understand the turbine response to these events. Pattern mining has been used successfully for different applications. We believe it to have large potential for understanding turbine behavior based on turbine status logs. These logs record all turbine actions and can be used as input for pattern mining algorithms. This paper proposes the use of a multi-level pattern mining approach in order to minimize the number of uninteresting patterns and facilitate response understanding. The paper mainly focuses on the extraction of patterns and association rules linked to certain alarms and how they can be annotated for further use in the multi-level pattern mining approach. Several years of wind turbine data is used. The use of the approach is illustrated by detecting the characteristic pattern linked to turbine response to an Extremely High Wind Speed Alert.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors