one publication added to basket [321868] | Macrostylis metallicola spec. nov.—an isopod with geographically clustered genetic variability from a polymetallic-nodule area in the Clarion-Clipperton Fracture Zone
Riehl, T.; De Smet, B. (2020). Macrostylis metallicola spec. nov.—an isopod with geographically clustered genetic variability from a polymetallic-nodule area in the Clarion-Clipperton Fracture Zone. PeerJ 8:e8621: 1-44. https://dx.doi.org/10.7717/peerj.8621 In: PeerJ. PeerJ: Corte Madera & London. e-ISSN 2167-8359, more | |
Keyword | Macrostylis metallicola Riehl & De Smet, 2020 [WoRMS]
| Author keywords | |
Authors | | Top | - Riehl, T.
- De Smet, B., more
| | |
Abstract | Background: The Clarion-Clipperton Fracture Zone (CCFZ) in the Northeast Central Pacific Ocean is a region of heightened scientific and public interest because of its wealth in manganese nodules. Due to a poor ecological understanding at the abyssal seafloor and limited knowledge of the organisms inhabiting this area, huge efforts in alpha taxonomy are required. To predict and manage potential hazards associated with future mining, taxonomy is an essential first step to grasp fundamental ecosystem traits, such as biogeographic patterns, connectivity, and the potential for post-impact recolonization. Amongst samples from the Global Sea Mineral Resources NV exploration area (EA) in the CCFZ an undescribed species of the isopod crustacean family Macrostylidae was discovered. Previously, it has been reported from two other nearby regions, the Institut Francais de Recherche pour ('Exploitation de la Mer and BGR EAs. There it was one of the more widely distributed and abundant species of the benthic macrofauna and exhibited geographically structured populations. It nevertheless remained taxonomically undescribed so far. Methods: The new species is described by means of integrative taxonomy. Morphologically, macro photography, confocal microscopy, scanning electron microscopy and light microscopy were used to describe the species and to get first insights on its phylogenetic origin. Additionally, mitochondrial DNA markers were used to test the morphological allocation of the two dimorphic sexes and juvenile stages, to analyze geographic patterns of genetic differentiation, and to study intra-and inter-species relationships, also in light of previously published population genetics on this species. Results: The new species, Macrostylis metallicola spec. nov., is a typical representative of Macrostylidae as recognizable from the fossosoma, prognathous cephalothorax, and styliform uropods. It can be morphologically distinguished from congeners by a combination of character states which include the autapomorphic shape of the first pleopod of the copulatory male. A sexual dimorphism, as expressed by a peculiar sequence of article length-width ratios of the male antennula, indicates a relationship with M. marionae Kniesz, Brandt & Riehl (2018) and M. longipes Hansen (1916) amongst other species sharing this dimorphism. Mitochondrial genetic markers point in a similar direction. M. metallicola appears to be amongst the more common and widely distributed components of the benthic macrofauna in this region which may suggest a resilience of this species to future mining activities because of its apparent potential for recolonization of impacted sites from adjacent areas of particular environmental interest. The genetic data, however, show geographic clustering of its genetic variability, pointing towards a limited potential for dispersal. Local extinction of populations could potentially not be compensated quickly and would mean a loss of genetic diversity of this species. |
|