A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data
Plastic clean-up and prevention overview Citable as data publication Leone, G.; Moulaert, I.; Devriese, L.I.; Sandra, M.; Pauwels, I.; Goethals, P.L.M.; Everaert, G.; Catarino, A.I.; Research Group Aquatic Ecology: Ghent University; Flanders Marine Institute (VLIZ); Aquatic Management: Research Institute for Nature and Forest: Belgium; (2023): Plastic clean-up and prevention overview. Marine Data Archive. https://doi.org/10.14284/596 Contact: Leone, Giulia Availability: This dataset is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Description In this dataset 124 plastic remediation technologies are listed with 29 of their key characteristics. The dataset has been compiled by merging a systematic literature review performed on the 29th of June 2022 on the electronic database Scopus and a non-systematic review. Scope Themes: Environmental quality/pollution > Pollution levels & monitoring Keywords: Plastics, Prevention and clean-up technologies, Remediation technologies, SWOT analysis, Global Geographical coverage Global Temporal coverage 1 July 2021 - 20 January 2023 Not relevant Contributors Universiteit Gent; Faculteit Bio-ingenieurswetenschappen; Vakgroep Dierwetenschappen en Aquatische Ecologie; Onderzoeksgroep Aquatische ecologie (AECO), more, data creator, data creator Vlaams Instituut voor de Zee (VLIZ), more, data creator, data creator Vlaamse overheid; Beleidsdomein Omgeving; Instituut voor Natuur- en Bosonderzoek (INBO), more, data creator, data creator Project PhD Decision support framework for plastic clean-up technologies in rivers and estuaries: minimizing unintentional bycatch while maintaining efficient plastic removal under realistic environmental conditions, more Publication Based on this dataset Leone, G. et al. (2023). A comprehensive assessment of plastic remediation technologies. Environ. Int. 173: 107854. https://dx.doi.org/10.1016/j.envint.2023.107854, more Dataset status: Completed Data type: Data Data origin: Literature research Metadatarecord created: 2023-03-02 Information last updated: 2023-03-02 |