Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes
Bauersachs, T.; Schouten, S.; Schwark, L. (2014). Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410: 390-400. http://dx.doi.org/10.1016/j.palaeo.2014.06.015
In: Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier: Amsterdam; Tokyo; Oxford; New York. ISSN 0031-0182; e-ISSN 1872-616X, more
Peer reviewed article  

Available in  Authors 
    NIOZ: NIOZ files 264976

Keyword
    Tetraedron minimum (A.Braun) Hansgirg, 1889 [WoRMS]
Author keywords
    Eocene; Lacustrine sediments; Maar lake; Paleoenvironmental reconstruction; Terrestrial organic matter; Tetraedron minimum

Authors  Top 
  • Bauersachs, T.
  • Schouten, S., more
  • Schwark, L.

Abstract
    We investigated a 150 m thick drill core section of Messel oil shale using bulk geochemical and stable isotope techniques in order to determine the organic matter sources and the environmental conditions that prevailed during the deposition of the lacustrine sequence. High Corg values (on average 27%) indicate that the Messel oil shale has likely been deposited under highly productive conditions and/or in an environment largely free of oxygen, which suggests a permanent stratification of the paleolake and prolonged periods of bottom water anoxia. Low stable nitrogen isotope values (ca. + 1 to + 2‰), observed at the transition from holomictic to meromictic conditions, suggest a brief period of an increased contribution of diazotrophic, possibly heterocystous, cyanobacteria that proliferated under the stagnant conditions. The basal oil shale unit (Lower Messel-Formation) is characterized by generally high HI values (> 570 mg HC/g Corg) and molar Corg/Ntot ratios (> 35) that evidence an increased loading of terrestrial organic matter to the lake system, which is hypothesized to be dominated by the lipid-rich constituents of vascular plants. The oil shale of the mid-section (Middle Messel-Formation) is characterized by carbon isotope excursions towards comparatively heavy d13Corg values of - 24‰ that together with slightly lower Corg/Ntot ratios (ca. 30) of this interval are taken as evidence for a higher loading of aquatic-derived organic matter to the paleolake. The uppermost part of the Middle Messel-Formation displays decreasing d13Corg and concomitantly high d15Ntot values, which is interpreted to indicate an increased importance of bacterial driven processes (such as methanogenesis, methanotrophy and denitrification) in the paleolake system. Our results thus indicate that the Eocene maar lake received organic matter from various autochthonous and allochthonous sources with contributions of each source varying significantly over the lake's existence

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors