Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

The Effect of Digestive Capacity on the Intake Rate of Toxic and Non-Toxic Prey in an Ecological Context
Oudman, T.; Hin, V.; Dekinga, A.; van Gils, J. (2015). The Effect of Digestive Capacity on the Intake Rate of Toxic and Non-Toxic Prey in an Ecological Context. PLoS One 10(8): e0136144. dx.doi.org/10.1371/journal.pone.0136144
In: PLoS One. Public Library of Science: San Francisco. ISSN 1932-6203; e-ISSN 1932-6203, more
Peer reviewed article  

Available in  Authors 

Authors  Top 

Abstract
    Digestive capacity often limits food intake rate in animals. Many species can flexibly adjustdigestive organ mass, enabling them to increase intake rate in times of increased energyrequirement and/or scarcity of high-quality prey. However, some prey species are defended by secondary compounds, thereby forcing a toxin limitation on the forager’s intake rate, a constraint that potentially cannot be alleviated by enlarging digestive capacity.Hence, physiological flexibility may have a differential effect on intake of different prey types, and consequently on dietary preferences.We tested this effect in red knots (Calidriscanutus canutus), medium-sized migratory shorebirds that feed on hard-shelled, usually mollusc, prey. Because they ingest their prey whole and crush the shell in their gizzard, the intake rate of red knots is generally constrained by digestive capacity. However, one of their main prey, the bivalve Loripes lucinalis, imposes a toxin constraint due to its symbiosis with sulphide-oxidizing bacteria. We manipulated gizzard sizes of red knots through prolonged exposure to hard-shelled or soft foods.We then measured maximum intake rates of toxic Loripes versus a non-toxic bivalve, Dosinia isocardia.We found that intake of Dosinia exponentially increased with gizzard mass, confirming earlier results with nontoxic prey,whereas intake of Loripes was independent of gizzard mass. Using linear programming, we show that this leads to markedly different expected diet preferences in red knots that try to maximize energy intake rate with a small versus a large gizzard. Intra- and inter-individual variation in digestive capacity is found in many animal species. Hence, thehere proposed functional link with individual differences in foraging decisions may be general. We emphasize the potential relevance of individual variation in physiology when studying trophic interactions.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors