Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Organic complexation of iron in the West Atlantic Ocean
Gerringa, L.J.A.; Rijkenberg, M.J.; Schoemann, V.; Laan, P.; de Baar, H.J.W. (2015). Organic complexation of iron in the West Atlantic Ocean. Mar. Chem. 177(Part 3): 434-446. dx.doi.org/10.1016/j.marchem.2015.04.007
In: Marine Chemistry. Elsevier: Amsterdam. ISSN 0304-4203; e-ISSN 1872-7581, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Dissolved iron; Organic ligands; Organic iron complexation; Atlantic ocean; GEOTRACES; Seawater

Authors  Top 
  • Gerringa, L.J.A., more
  • Rijkenberg, M.J., more
  • Schoemann, V., more

Abstract
    The characteristics of the dissolved iron (DFe) binding organic ligands were determined during 3 Dutch GEOTRACES cruises covering the length of the West Atlantic Ocean. Adsorptive Differential Pulse Cathodic Stripping Voltammetry (AdDPCSV) with TAC as competing ligand was used to measure Fe binding organic ligands. Although the distribution of DFe is related to its sources, sinks and vertical processes, ultimately it is the solubility of Fe in seawater that determines its concentrations in the oceans. The Fe binding organic ligands increase the solubility of Fe. The total ligand concentration and the excess ligand over Fe concentration showed a decreasing trend from north to south in the surface ocean as well as in the North Atlantic Deep Water (NADW). This trend could be extended further north to the Arctic Ocean, where ligand concentrations were even higher. The Arctic might be a source of ligands to the northern West Atlantic Ocean. We calculated a residence time of 779 to 1039 years for dissolved organic ligands in the NADW. This is 2.5 to 4 times larger than the estimated residence time of DFe in the NADW.The highest concentrations of excess ligands were found in the surface where the dissolved Fe concentrations were the lowest. This resulted in high ratios of [Lt]/DFe in the surface decreasing with depth to a value close to 2 below 500 m, where more ligands were saturated. Dissolved organic ligands were saturated with Fe in a large part of the southern West Atlantic at mid-depth, where DFe concentrations increased due to hydrothermal activity.The inorganic Fe concentrations, [Fe'], were surprisingly uniform for the western Atlantic Ocean. Values ranged between 0.2 and 1 pM in the deep Atlantic as well as in the surface, where ligands were unsaturated with Fe. However, in the hydrothermal influenced region, where ligands were (nearly) saturated, [Fe'] was high, possibly larger than the solubility product of the Fe(oxy)hydroxides and thus suggesting either high concentrations of colloidal Fe or particulate Fe. Our results showed that the dissolved Fe concentrations were strictly regulated by a steady state between complexation by ligands and adsorption/precipitation of particles, the extensive hydrothermal influenced area seemed to be an exception.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors