Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

An assessment of transport timescales and return coefficient in adjacent tropical estuaries
Andutta, F.P.; Helfer, F.; de Miranda, L.B.; Deleersnijder, E.; Thomas, C.; Lemckert, C. (2016). An assessment of transport timescales and return coefficient in adjacent tropical estuaries. Cont. Shelf Res. 124: 49-62. https://dx.doi.org/10.1016/j.csr.2016.05.006
In: Continental Shelf Research. Pergamon Press: Oxford; New York. ISSN 0278-4343; e-ISSN 1873-6955, more
Peer reviewed article  

Available in  Authors 

Keywords
    Marine/Coastal; Brackish water; Fresh water
Author keywords
    Tropical estuary; Residence time; Exposure time; Return coefficient;Numerical model; Hydrodynamics

Authors  Top 
  • Andutta, F.P.
  • Helfer, F.
  • de Miranda, L.B.
  • Deleersnijder, E., more
  • Thomas, C., more
  • Lemckert, C.

Abstract
    Transport timescales (TTS), namely residence time and exposure time, were computed for adjacent shallow meso-tidal tropical estuarines system using the Lagrangian model D-Waq Part coupled with the hydrodynamic model Delft3D-Flow, and the Constituent-oriented Age and Residence time Theory, CART. The main results are threefold: (a) The TTS differs more between releases at high or low tide than between those at spring and neap tides. The exposure time was also calculated and found to be larger than the residence time by a few days. (b) The exposure and residence times were used to evaluate the return coefficient (r) for different scenarios. As with residence and exposure times, the return coefficient was found to differ more between releases at high or low tide than between those at spring and neap tides. (c) For the Caravelas Estuary, where the river inflow was low (~4 m3 s−1), the residence time was found to be much larger than for the Peruípe Estuary, where the river discharge was greater and nearly constant during the sampling period (~20 m3 s−1). These results shows the importance of advection in decreasing TTS in the Peruípe Estuary compared to the Caravelas Estuary. The influence of the advection and dispersion agrees with previous simple estimates obtained using the newly modified Land Ocean Interaction Coastal Zone (LOICZ) model by Andutta et al. (2014).

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors