Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices
Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. (2011). The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy & Environmental Science 4(10): 3930-3941. https://dx.doi.org/10.1039/c0ee00306a
In: Energy & Environmental Science. ROYAL SOC CHEMISTRY: Cambridge. ISSN 1754-5692; e-ISSN 1754-5706, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Jeffryes, C., more
  • Campbell, J.
  • Li, H.
  • Jiao, J.
  • Rorrer, G.

Abstract
    The ability to produce low-cost, hierarchically-structured and nanopatterned inorganic materials could potentially revolutionize the way we fabricate photovoltaic, energy storage, and optoelectronic devices. In nature, many organisms carry out the hierarchical assembly of metal oxide materials through cellular and biochemical processes that replicate periodic micro-and nanoscale features by a bottom-up approach at ambient conditions. For example, single-celled algae called diatoms produce a nanostructured amorphous silica skeleton called a frustule. The insertion of other metal oxide materials such as titanium or germanium dioxide into the nanostructure of the diatom frustule could potentially be utilized to fabricate new dye-sensitized solar cells, nanostructured battery electrodes, and electroluminescent display devices. The exploitation of diatom nanobiotechnology for the development of novel device concepts in these areas is overviewed.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors