Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Vegetation recovery on neighboring tidal flats forms an Achilles' heel of saltmarsh resilience to sea level rise
Zhu, Z.; van Belzen, J.; Zhu, Q.; van de Koppel, J.; Bouma, T.J. (2020). Vegetation recovery on neighboring tidal flats forms an Achilles' heel of saltmarsh resilience to sea level rise. Limnol. Oceanogr. 65(1): 51-62. https://dx.doi.org/10.1002/lno.11249

Additional data:
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc. ISSN 0024-3590; e-ISSN 1939-5590, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Zhu, Z., more
  • van Belzen, J., more
  • Zhu, Q.
  • van de Koppel, J., more
  • Bouma, T.J., more

Abstract
    Coastal wetlands such as saltmarshes are valued as prominent buffering ecosystems to global climate change and sea level rise (SLR), yet their long‐term persistence may also be threatened by these global change stressors. While saltmarshes are increasingly thought to be resilient to SLR owing to high vertical marsh adaptability, their long‐term stability remains uncertain due to our poor understanding of marsh resilience at the marsh‐tidal flat interface, where wave disturbance can progressively shift vegetated marsh toward a bare tidal flat state. Here, we explore how SLR affects vegetation recoverability on tidal flats using cordgrass, a globally common saltmarsh foundation species, as a model plant. Combined field and model results demonstrate that small increases in wave forcing due to raised water depth over tidal flats can dramatically weaken or even block vegetation recovery from eroding marsh edges, through hampering seed persistence. Vegetation recovery on tidal flats next to the marsh edge thus represents an unrecognized Achilles' heel of marsh resilience to SLR, which if ignored may cause underestimation of marsh vulnerability. These findings are highly relevant for a more comprehensive assessment of marsh susceptibility to SLR in systems where seeds play an essential role in revegetation of tidal flats, and highlight the importance of maintaining either a wave‐protected or well‐elevated tidal flat near the marsh edge that allows for quick vegetation recovery for supporting resilient marshes.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors