Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Phylogeography, population structure, and species delimitation in rockhopper penguins (Eudyptes chrysocome and Eudyptes moseleyi)
Mays, H.L.; Oehler, D.A.; Morrison, K.W.; Morales, A.E.; Lycans, A.; Perdue, J.; Battley, P.F.; Cherel, Y.; Chilvers, B.L.; Crofts, S.; Demongin, L.; Fry, W.R.; Hiscock, J.; Kusch, A.; Marin, M.; Poisbleau, M.; Quillfeldt, P.; Rey, A.R.; Steinfurth, A.; Thompson, D.R.; Weakley, L.A. (2019). Phylogeography, population structure, and species delimitation in rockhopper penguins (Eudyptes chrysocome and Eudyptes moseleyi). J. Hered. 110(7): 801-817. https://dx.doi.org/10.1093/jhered/esz051
In: Journal of Heredity. Oxford University Press: Cary, N.C.. ISSN 0022-1503; e-ISSN 1465-7333, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Antarctic Circumpolar Current; conservation genetics; migration;Southern Ocean; speciation; subtropical front

Authors  Top 
  • Mays, H.L.
  • Oehler, D.A.
  • Morrison, K.W.
  • Morales, A.E.
  • Lycans, A.
  • Perdue, J.
  • Battley, P.F.
  • Cherel, Y.
  • Chilvers, B.L.
  • Crofts, S.
  • Demongin, L., more
  • Fry, W.R.
  • Hiscock, J.
  • Kusch, A.
  • Marin, M.
  • Poisbleau, M., more
  • Quillfeldt, P.
  • Rey, A.R.
  • Steinfurth, A.
  • Thompson, D.R.
  • Weakley, L.A.

Abstract
    Rockhopper penguins are delimited as 2 species, the northern rockhopper (Eudyptes moseleyi) and the southern rockhopper (Eudyptes chrysocome), with the latter comprising 2 subspecies, the western rockhopper (Eudyptes chrysocome chrysocome) and the eastern rockhopper (Eudyptes chrysocome filholi). We conducted a phylogeographic study using multilocus data from 114 individuals sampled across 12 colonies from the entire range of the northern/southern rockhopper complex to assess potential population structure, gene flow, and species limits. Bayesian and likelihood methods with nuclear and mitochondrial DNA, including model testing and heuristic approaches, support E. moseleyi and E. chrysocome as distinct species lineages with a divergence time of 0.97 Ma. However, these analyses also indicated the presence of gene flow between these species. Among southern rockhopper subspecies, we found evidence of significant gene flow and heuristic approaches to species delimitation based on the genealogical diversity index failed to delimit them as species. The best-supported population models for the southern rockhoppers were those where E. c. chrysocome and E. c. filholi were combined into a single lineage or 2 lineages with bidirectional gene flow. Additionally, we found that E. c. filholi has the highest effective population size while E. c. chrysocome showed similar effective population size to that of the endangered E. moseleyi. We suggest that the current taxonomic definitions within rockhopper penguins be upheld and that E. chrysocome populations, all found south of the subtropical front, should be treated as a single taxon with distinct management units for E. c. chrysocome and E. c. filholi.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors