Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

The ECCO-Darwin data-assimilative global ocean biogeochemistry model: estimates of seasonal to multidecadal surface ocean pCO2 and air-sea CO2 flux
Carroll, D.; Menemenlis, D.; Adkins, J.F.; Bowman, K.W.; Brix, H.; Dutkiewicz, S.; Fenty, I.; Gierach, M.M.; Hill, C.; Jahn, O.; Landschützer, P.; Lauderdale, J.M.; Liu, J.; Manizza, M.; Naviaux, J.D.; Rödenbeck, C.; Schimel, D.S.; Van der Stocken, T.; Zhang, H. (2020). The ECCO-Darwin data-assimilative global ocean biogeochemistry model: estimates of seasonal to multidecadal surface ocean pCO2 and air-sea CO2 flux. J. Adv. Model. Earth Syst. 12(10): e2019MS001888. https://dx.doi.org/10.1029/2019ms001888
In: Journal of Advances in Modeling Earth Systems. American Geophysical Union: Washington. e-ISSN 1942-2466, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Carroll, D.
  • Menemenlis, D.
  • Adkins, J.F.
  • Bowman, K.W.
  • Brix, H.
  • Dutkiewicz, S.
  • Fenty, I.
  • Gierach, M.M.
  • Hill, C.
  • Jahn, O.
  • Landschützer, P., more
  • Lauderdale, J.M.
  • Liu, J.
  • Manizza, M.
  • Naviaux, J.D.
  • Rödenbeck, C.
  • Schimel, D.S.
  • Van der Stocken, T., more
  • Zhang, H., more

Abstract
    Quantifying variability in the ocean carbon sink remains problematic due to sparse observations and spatiotemporal variability in surface ocean pCO2. To address this challenge, we have updated and improved ECCO-Darwin, a global ocean biogeochemistry model that assimilates both physical and biogeochemical observations. The model consists of an adjoint-based ocean circulation estimate from the Estimating the Circulation and Climate of the Ocean (ECCO) consortium and an ecosystem model developed by the Massachusetts Institute of Technology Darwin Project. In addition to the data-constrained ECCO physics, a Green's function approach is used to optimize the biogeochemistry by adjusting initial conditions and six biogeochemical parameters. Over seasonal to multidecadal timescales (1995–2017), ECCO-Darwin exhibits broad-scale consistency with observed surface ocean pCO2 and air-sea CO2 flux reconstructions in most biomes, particularly in the subtropical and equatorial regions. The largest differences between CO2 uptake occur in subpolar seasonally stratified biomes, where ECCO-Darwin results in stronger winter uptake. Compared to the Global Carbon Project OBMs, ECCO-Darwin has a time-mean global ocean CO2 sink (2.47 ± 0.50 Pg C year−1) and interannual variability that are more consistent with interpolation-based products. Compared to interpolation-based methods, ECCO-Darwin is less sensitive to sparse and irregularly sampled observations. Thus, ECCO-Darwin provides a basis for identifying and predicting the consequences of natural and anthropogenic perturbations to the ocean carbon cycle, as well as the climate-related sensitivity of marine ecosystems. Our study further highlights the importance of physically consistent, property-conserving reconstructions, as are provided by ECCO, for ocean biogeochemistry studies.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors