Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Microbial membrane lipid adaptations to high hydrostatic pressure in the marine environment
Tamby, A.; Sinninghe Damsté, J.S; Villanueva, L. (2023). Microbial membrane lipid adaptations to high hydrostatic pressure in the marine environment. Front. Mol. Biosci. 9: 1058381. https://dx.doi.org/10.3389/fmolb.2022.1058381
In: Frontiers in Molecular Biosciences. Frontiers Media SA: Lausanne. e-ISSN 2296-889X, more
Peer reviewed article  

Available in  Authors 

Author keywords
    piezophile; high hydrostatic pressure; extremophile; membrane; membrane adaptation; microbial adaptation; phospholipid

Authors  Top 
  • Tamby, A.
  • Sinninghe Damsté, J.S, more
  • Villanueva, L., more

Abstract
    The deep-sea is characterized by extreme conditions, such as high hydrostatic pressure (HHP) and near-freezing temperature. Piezophiles, microorganisms adapted to high pressure, have developed key strategies to maintain the integrity of their lipid membrane at these conditions. The abundance of specific membrane lipids, such as those containing unsaturated and branched-chain fatty acids, rises with increasing HHP. Nevertheless, this strategy is not universal among piezophiles, highlighting the need to further understand the effects of HHP on microbial lipid membranes. Challenges in the study of lipid membrane adaptations by piezophiles also involve methodological developments, cross-adaptation studies, and insight into slow-growing piezophiles. Moreover, the effects of HHP on piezophiles are often difficult to disentangle from effects caused by low temperature that are often characteristic of the deep sea. Here, we review the knowledge of membrane lipid adaptation strategies of piezophiles, and put it into the perspective of marine systems, highlighting the future challenges of research studying the effects of HHP on the microbial lipid composition.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors