Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [117830]
Are Antarctic suspension-feeding communities different from those elsewhere in the world?
Gili, J.-M.; Coma, R.; Orejas, C.; López-González, P.J.; Zabala, M. (2001). Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol. 24(7): 473-485. dx.doi.org/10.1007/s003000100257
In: Polar Biology. Springer-Verlag: Berlin; Heidelberg. ISSN 0722-4060; e-ISSN 1432-2056, more
Related to:
Gili, J.-M.; Coma, R.; Orejas, C.; López-González, P.J.; Zabala, M. (2002). Are Antarctic suspension-feeding communities different from those elsewhere in the world?, in: Arntz, W.E. et al. (Ed.) Ecological studies in the Antarctic sea ice zone: results of EASIZ Midterm Symposium. pp. 104-116, more
Peer reviewed article  

Keywords
    Climatic zones > Polar zones
    Composition > Community composition
    Environments > Aquatic environment > Benthic environment
    Particulates > Suspended particulate matter
    Suspension feeders
    Topographic features > Submarine features > Continental shelves
    Marine/Coastal

Authors  Top 
  • Gili, J.-M.
  • Coma, R.
  • Orejas, C.
  • López-González, P.J.
  • Zabala, M.

Abstract
    This paper reviews the trophic ecology of benthic suspension feeders in Antarctic shelf communities, studied within SCAR's EASIZ Programme, in comparison with published information from other seas. Dense benthic suspension-feeder communities capture large quantities of particles and may directly regulate primary, and indirectly, secondary production in littoral food chains. Most work has been performed in temperate and tropical seas; however, little is known about suspension feeders in cold environments. Recent studies on Antarctic littoral benthic suspension feeders suggest the period of winter inactivity may last only a few weeks. This contrasts with the hypothesis that in Antarctic communities there is a prolonged period of minimal activity lasting at least 6 months during the austral winter. Results from other oceans may explain how dense benthic communities could develop under such conditions. Alternative food sources, i.e. the "fine fraction", sediment resuspension, lateral advection and efficient food assimilation may play a significant role in the development of suspension-feeder dominated, very diversified, high biomass and three-dimensionally structured communities on the Antarctic shelf.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors