Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [16914]
The frontal systems in the Iroise Sea: development of Gyrodinium aureolum Hulburt on the inner front
Morin, P.; Birrien, J.L.; Le Corre, P. (1989). The frontal systems in the Iroise Sea: development of Gyrodinium aureolum Hulburt on the inner front, in: Ros, J.D. (Ed.) Topics in Marine Biology: Proceedings of the 22nd European Marine Biology Symposium, Barcelona, Spain, August 1987. Scientia Marina (Barcelona), 53(2-3): pp. 215-221
In: Ros, J.D. (Ed.) (1989). Topics in marine biology: Proceedings of the 22nd European Marine Biology Symposium, Barcelona, Spain, August 1987. European Marine Biology Symposia, 22. Scientia Marina (Barcelona), 53(2-3). 145-754 pp., more
In: European Marine Biology Symposia., more

Keyword
    Marine/Coastal

Authors  Top 
  • Morin, P., more
  • Birrien, J.L.
  • Le Corre, P.

Abstract
    Gyrodinium aureolum has been found responsible for a number of red tide outbreaks in northwest European shelf seas over the past decade, sometimes with adverse consequences on the ecosystem. The abundance of the species was followed up over several months in 1983 in the Bay of Douarnenez, from data obtained on a series of twelve cruises carried out from March 1983 to February 1984 and intended in the first place for the study of the influence of the Iroise coastal front on plankton production. High densities of Gyrodinium aureolus build up slowly: a three-month delay is observed from the appearance of the first cells in the Bay to the time when the abundance of the species reaches red tide concentrations. Different processes appear to have contributed to the generation of a red tide. Advection of low-salinity water into the Bay from the alongshore drift on the south coast of Brittany resulted in early stabilization of the water column and possibly introduced the species. Conditions favouring the dinoflagellate also persisted for several months, as thermal stratification (strong sunlight, no wind) replaced in June the spring haline straification. The species could finally have benefited from intense regeneration which is shown to have taken place in the water mass below the thermocline.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors