one publication added to basket [211450] | Modeling the climate response to a massive methane release from gas hydrates
Renssen, H.; Beets, C.J.; Fichefet, T.; Goosse, H.; Kroon, D. (2004). Modeling the climate response to a massive methane release from gas hydrates. Paleoceanography 19(2). dx.doi.org/10.1029/2003PA000968 In: Paleoceanography. American Geophysical Union: Washington, DC. ISSN 0883-8305; e-ISSN 1944-9186, more | |
Authors | | Top | - Renssen, H.
- Beets, C.J.
- Fichefet, T., more
| - Goosse, H., more
- Kroon, D.
| |
Abstract | [1] The climate response to a massive release of methane from gas hydrates is simulated in two 2500-year-long numerical experiments performed with a three-dimensional, global coupled atmosphere-sea ice-ocean model of intermediate complexity. Two different equilibrium states were used as reference climates; the first state with preindustrial forcing conditions and the second state with a four times higher atmospheric CO2 concentration. These climates were perturbed by prescribing a methane emission scenario equivalent to that computed for the Paleocene/Eocene thermal maximum (PETM; similar to 55.5 Ma), involving a sudden release of 1500 Gt of carbon into the atmosphere in 1000 years. In both cases, this produced rapid atmospheric warming (up to 10°C at high latitudes) and a reorganization of the global overturning ocean circulation. In the ocean, maximum warming (2-4°C) occurred at intermediate depths where methane hydrates are stored in the upper slope sediments, suggesting that further hydrate instability could result from the prescribed scenario. |
|