Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [215312]
Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect
Goldstein, M.C.; Rosenberg, M.; Cheng, L. (2012). Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol. Lett. 8(5): 817-820. dx.doi.org/10.1098/rsbl.2012.0298
In: Biology Letters. Royal Society Publishing: London. ISSN 1744-9561; e-ISSN 1744-957X, more
Peer reviewed article  

Available in  Authors 

Keywords
    Halobates (Halobates) sericeus Eschscholtz, 1822 [WoRMS]
    Marine/Coastal
Author keywords
    microplastic; marine debris; North Pacific Subtropical Gyre; Halobates sericeus; neuston

Authors  Top 
  • Goldstein, M.C.
  • Rosenberg, M.
  • Cheng, L., more

Abstract
    Plastic pollution in the form of small particles (diameter less than 5 mm)—termed ‘microplastic’—has been observed in many parts of the world ocean. They are known to interact with biota on the individual level, e.g. through ingestion, but their population-level impacts are largely unknown. One potential mechanism for microplastic-induced alteration of pelagic ecosystems is through the introduction of hard-substrate habitat to ecosystems where it is naturally rare. Here, we show that microplastic concentrations in the North Pacific Subtropical Gyre (NPSG) have increased by two orders of magnitude in the past four decades, and that this increase has released the pelagic insect Halobates sericeus from substrate limitation for oviposition. High concentrations of microplastic in the NPSG resulted in a positive correlation between H. sericeus and microplastic, and an overall increase in H. sericeus egg densities. Predation on H. sericeus eggs and recent hatchlings may facilitate the transfer of energy between pelagic- and substrate-associated assemblages. The dynamics of hard-substrate-associated organisms may be important to understanding the ecological impacts of oceanic microplastic pollution.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors