Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [222608]
Life without a cell membrane: challenging the specificity of bacterial endophytes within Bryopsis (Bryopsidales, Chlorophyta)
Hollants, J.; Decleyre, H.; Leliaert, F.; De Clerck, O.; Willems, A. (2011). Life without a cell membrane: challenging the specificity of bacterial endophytes within Bryopsis (Bryopsidales, Chlorophyta). BMC Microbiol. 11(255): 10. http://dx.doi.org/10.1186/1471-2180-11-255
In: BMC Microbiology. BioMed Central: London. ISSN 1471-2180; e-ISSN 1471-2180, more
Peer reviewed article  

Available in  Authors 

Authors  Top 

Abstract

    Background

    The siphonous green macroalga Bryopsis has some remarkable characteristics. Besides hosting a rich endophytic bacterial flora, Bryopsis also displays extraordinary wound repair and propagation mechanisms. This latter feature includes the formation of protoplasts which can survive in the absence of a cell membrane for several minutes before regenerating into new individuals. This transient 'life without a membrane' state, however, challenges the specificity of the endophytic bacterial communities present and raises the question whether these bacteria are generalists, which are repeatedly acquired from the environment, or if there is some specificity towards the Bryopsis host.

    Results

    To answer this question, we examined the temporal stability and the uniqueness of endobiotic bacterial communities within Bryopsis samples from the Mexican west coast after prolonged cultivation. DGGE analysis revealed that Bryopsis endophytic bacterial communities are rather stable and clearly distinct from the epiphytic and surrounding cultivation water bacterial communities. Although these endogenous communities consist of both facultative and obligate bacteria, results suggest that Bryopsis owns some intrinsic mechanisms to selectively maintain and/or attract specific bacteria after repeated wounding events in culture.

    Conclusions

    This suggests that Bryopsis algae seem to master transient stages of life without a cell membrane well as they harbor specific - and possibly ecological significant - endophytic bacteria.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors