Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [232748]
Beach response to wave energy converter farms acting as coastal defence
Mendoza, E.; Silva, R.; Zanuttigh, B.; Angelelli, E.; Andersen, T.L.; Martinelli, L.; Nørgaard, J.Q.H.; Ruol, P. (2014). Beach response to wave energy converter farms acting as coastal defence. Coast. Eng. 87: 97-111. http://dx.doi.org/10.1016/j.coastaleng.2013.10.018
In: Coastal Engineering: An International Journal for Coastal, Harbour and Offshore Engineers. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0378-3839; e-ISSN 1872-7379, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Wave energy converters; Coastal protection; Coastline response; Wave transmission; Numerical modelling

Project Top | Authors 
  • Innovative coastal technologies for safer European coasts in a changing climate, more

Authors  Top 

Abstract
    One of the greatest challenges of coastal engineering today is the need for coastal protection in the changing climate scenario. Places which are nowadays protected will demand upgraded defences and more sites will require security; in all cases a large amount of resources will be needed to ensure beach maintenance and coastal safety. This may be an opportunity for the multi-purpose use of Wave Energy Converters (WECs) if the foreseen increase of energy demand in coastal areas is also considered. In this paper a group of WECs based on different operating concepts is numerically tested in front of two beaches, i.e. the Bay of Santander in Spain and Las Glorias beach in Mexico, representing two different case studies where the long-shore sediment transport is dominant. The hydrodynamics induced by these devices is represented by means of a 2D elliptic modified mild-slope model that is calibrated against new experimental results. The wave field is then used as input for the analytical calculation of the long-shore sediment transport and the coastline trend is estimated by applying the continuity of sediment equation. The characteristics of the selected numerical models give this work a first approach level. All the devices were found to produce a positive trend (accretion) at least in small areas. Recommendations are given to facilitate the selection of the device and the design of the farm layout for shore protection purpose.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors