one publication added to basket [233647] | Imaging marine life with a thin light-sheet
Capoulade, J.; Reynaud, E.G.; Wachsmuth, M (2014). Imaging marine life with a thin light-sheet, in: Reynaud, E.G. (Ed.) Imaging marine life: macrophotography and microscopy approaches for marine biology. pp. 186-209. http://dx.doi.org/10.1002/9783527675418.ch8 In: Reynaud, E.G. (Ed.) (2014). Imaging marine life: Macrophotography and microscopy approaches for marine biology. Wiley-Blackwell: Weinheim. ISBN 978-3-527-32744-7. XXI, 253 pp., more |
Keywords | Analytical techniques > Microscopy > Fluorescence microscopy Corals Optical sectioning Copepoda [WoRMS]; Tintinnina [WoRMS] Marine/Coastal | Author keywords | Bessel beams; Copepods; 3D imaging; Light-sheet microscopy; Multiphoton fluorescence excitation; Quantitative microscopy; Structured illumination; Tintinnids |
Authors | | Top | - Capoulade, J.
- Reynaud, E.G.
- Wachsmuth, M
| | |
Abstract | Light-sheet fluorescence microscopy (LSFM) is a non-invasive optical method for the observation of living specimens. Although this concept was established a century ago it is only during the last decade that instruments suitable for biological applications have been developed, thereby circumventing some of the limitations of established fluorescence imaging techniques such as confocal laser scanning microscopy. LSFM utilizes a sheet of laser light to illuminate only a thin slice of a fluorescently labeled sample. A wide-field fluorescence microscope, placed perpendicular to the light-sheet, serves to collect the fluorescence signal and image the observed region by means of a camera. This side-on illumination configuration features several advantages, including intrinsic optical sectioning without the need of spatial filtering as employed in confocal microscopy, excellent signal-to-noise ratio, high temporal resolution, and drastically reduced overall photobleaching and phototoxicity inside living specimens. Moreover, the non-conventional geometry of LSFM opens up a completely new way of sample mounting, enabling convenient multi-view image acquisition for 3D imaging by simple rotation of the sample within the medium-filled chamber. Although LSFM was developed originally for the observation of large organisms such as zebrafish embryos, this method can be adapted to a large range of samples from macroscopic specimens like corals or copepods to microscopic organisms like tintinnids. |
|