Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [23807]
Sensitivity of a global ice-ocean model to the Bering Strait throughflow
Goosse, H.; Campin, J.M.; Fichefet, T.; Deleersnijder, E. (1997). Sensitivity of a global ice-ocean model to the Bering Strait throughflow. Clim. dyn. 13: 349-358
In: Climate Dynamics. Springer: Berlin; Heidelberg. ISSN 0930-7575; e-ISSN 1432-0894, more
Peer reviewed article  

Available in  Authors 

Keywords
    Analysis > Mathematical analysis > Numerical analysis
    Ice > Sea ice
    Motion > Water motion > Circulation > Water circulation > Ocean circulation
    Motion > Water motion > Circulation > Water circulation > Ocean circulation > Thermohaline circulation
    Ocean-ice-atmosphere system
    INE, Bering Strait [Marine Regions]
    Marine/Coastal

Authors  Top 
  • Goosse, H., more
  • Campin, J.M.
  • Fichefet, T., more
  • Deleersnijder, E., more

Abstract
    To understand the influence of the Bering Strait on the World Ocean's circulation, a model sensitivity analysis is conducted. The numerical experiments are carried out with a global, coupled ice-ocean model. The water transport through the Bering Strait is parametrized according to the geostrophic control theory. The model is driven by surface fluxes derived from bulk formulae assuming a prescribed atmospheric seasonal cycle. In addition, a weak restoring to observed surface salinities is applied to compensate for the global imbalance of the imposed surface freshwater fluxes. The freshwater flux from the North Pacific to the North Atlantic associated with the Bering Strait throughflow seems to be an important element in the freshwater budget of the Greenland and Norwegian seas and of the Atlantic. This flux reduces a freshening of the North Atlantic surface waters, which reduces the convective activity and leads to a noticeable (6%) weakening of the thermohaline conveyor belt. It is argued that the contrasting results obtained by Reason and Power are due to the type of surface boundary conditions they used.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors