Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [239870]
How superdiffusion gets arrested: ecological encounters explain shift from Levy to Brownian movement
de Jager, M.; Bartumeus, F.; Kölzsch, A.; Weissing, F.J.; Hengeveld, G.M.; Nolet, B.A.; Herman, P.M.J.; de Koppel, J. (2014). How superdiffusion gets arrested: ecological encounters explain shift from Levy to Brownian movement. Proc. - Royal Soc., Biol. Sci. 281(1774): 20132605. http://dx.doi.org/10.1098/rspb.2013.2605
In: Proceedings of the Royal Society of London. Series B. The Royal Society: London. ISSN 0962-8452; e-ISSN 1471-2954, more
Peer reviewed article  

Available in  Authors 

Keyword
    Mytilus edulis Linnaeus, 1758 [WoRMS]
Author keywords
    Brownian motion; Levy walk; animal movement; Mytilus edulis; searchefficiency; resource density

Authors  Top 
  • de Jager, M., more
  • Bartumeus, F.
  • Kölzsch, A., more
  • Weissing, F.J.
  • Hengeveld, G.M.
  • Nolet, B.A.
  • Herman, P.M.J., more
  • de Koppel, J., more

Abstract
    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Levy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors