Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [243773]
Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen
Wijgerde, T.; Silva, C.I.F.; Scherders, V.; van Bleijswijk, J.; Osinga, R. (2014). Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biology Open 3: 489-493. dx.doi.org/10.1242/bio.20147922
In: Biology Open. The Company of Biologists: Cambridge. ISSN 2046-6390; e-ISSN 2046-6390, more
Peer reviewed article  

Available in  Authors 

Keyword
    Acropora millepora (Ehrenberg, 1834) [WoRMS]
Author keywords
    Acropora millepora, Calcification, Climate change, Oxygen

Authors  Top 
  • Wijgerde, T.
  • Silva, C.I.F., more
  • Scherders, V.
  • van Bleijswijk, J., more
  • Osinga, R.

Abstract
    Coral reefs are essential to many nations, and are currently in global decline. Although climate models predict decreases in seawater pH (~0.3 units) and oxygen saturation (~5 percentage points), these are exceeded by the current daily pH and oxygen fluctuations on many reefs (pH 7.8–8.7 and 27–241% O2 saturation). We investigated the effect of oxygen and pH fluctuations on coral calcification in the laboratory using the model species Acropora millepora. Light calcification rates were greatly enhanced (+178%) by increased seawater pH, but only at normoxia; hyperoxia completely negated this positive effect. Dark calcification rates were significantly inhibited (51–75%) at hypoxia, whereas pH had no effect. Our preliminary results suggest that within the current oxygen and pH range, oxygen has substantial control over coral growth, whereas the role of pH is limited. This has implications for reef formation in this era of rapid climate change, which is accompanied by a decrease in seawater oxygen saturation owing to higher water temperatures and coastal eutrophication.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors