Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [252689]
Oceans and Human Health
Thorndyke, M.; McGowan, F.; Fleming, L.; Solo-Gabriele, H. (Ed.) (2016). Oceans and Human Health. Journal of the Marine Biological Association of the United Kingdom, 96(1). Cambridge University Press: Cambridge. 216 pp.

Additional data:
Part of: Journal of the Marine Biological Association of the United Kingdom. Cambridge University Press/Marine Biological Association of the United Kingdom: Cambridge. ISSN 0025-3154; e-ISSN 1469-7769, more
Related to:
Appleby, T.; Kinsey, S.; Wheeler, B.; Cunningham, E. (2015). The marine biology of law and human health. J. Mar. Biol. Ass. U.K. 96(1): 19-27. https://dx.doi.org/10.1017/s0025315415000909, more
Berdalet, E.; Fleming, L.E.; Gowen, R.; Davidson, K.; Hess, P.; Backer, L.C.; Moore, S.K.; Hoagland, P.; Enevoldsen, H. (2015). Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J. Mar. Biol. Ass. U.K. 96(1): 61-91. https://hdl.handle.net/10.1017/s0025315415001733, more
Derbali, A.; Taieb, A.H.; Kammoun, W.; Gouirah, J.; Wannes-Ghorbel, A.; Zamouri-Langar, N.; Ghorbel, M.; Jarboui, O. (2015). Stock assessment, spatial distribution and biological parameters of the clam Venerupis decussata along the Sfax coasts (Tunisia, Central Mediterranean). J. Mar. Biol. Ass. U.K. 96(1): 177-184. https://dx.doi.org/10.1017/s002531541500140x, more
Doyle, J.J.; Ward, J.E.; Mason, R. (2015). Exposure of bivalve shellfish to titania nanoparticles under an environmental-spill scenario: Encounter, ingestion and egestion. J. Mar. Biol. Ass. U.K. 96(1): 137-149. https://dx.doi.org/10.1017/s0025315415001174, more
Gras, M.; Safi, G.; Lebredonchel, H.; Quinquis, J.; Foucher, É.; Koueta, N.; Robin, J.-P. (2015). Stock structure of the English Channel common cuttlefish Sepia officinalis (Linnaeus, 1758) during the reproduction period. J. Mar. Biol. Ass. U.K. 96(1): 167-176. https://dx.doi.org/10.1017/s0025315415001162, more
Gribble, M.O.; Karimi, R.; Feingold, B.J.; Nyland, J.F.; O'Hara, T.M.; Gladyshev, M.I.; Chen, C.Y. (2016). Mercury, selenium and fish oils in marine food webs and implications for human health. J. Mar. Biol. Ass. U.K. 96(1): 43-59. https://hdl.handle.net/10.1017/S0025315415001356, more
Jaspars, M.; De Pascale, D.; Andersen, J.H.; Reyes, F.; Crawford, A.D.; Ianora, A. (2016). The marine biodiscovery pipeline and ocean medicines of tomorrow. J. Mar. Biol. Ass. U.K. 96(1): 151-158. https://hdl.handle.net/10.1017/s0025315415002106, more
Johnstone, K.M.; Rainbow, P.S.; Clark, P.F.; Smith, B.D.; Morritt, D. (2015). Trace metal bioavailabilities in the Thames estuary: continuing decline in the 21st century. J. Mar. Biol. Ass. U.K. 96(1): 205-216. https://dx.doi.org/10.1017/s0025315415001952, more
Legat, A.; French, V.A.; McDonough, N. (2015). An economic perspective on oceans and human health. J. Mar. Biol. Ass. U.K. 96(1): 13-17. https://dx.doi.org/10.1017/s0025315415001319, more
Lloret, J.; Rätz, H.-J.; Lleonart, J.; Demestre, M. (2015). Challenging the links between seafood and human health in the context of global change. J. Mar. Biol. Ass. U.K. 96(1): 29-42. https://hdl.handle.net/10.1017/s0025315415001988, more
McGowan, F.; Thorndyke, M.; Solo-Gabriele, H.; Fleming, L.E. (2016). Editorial. Oceans and human health. J. Mar. Biol. Ass. U.K. 96(1): 1-2. https://dx.doi.org/10.1017/s0025315415001939, more
Morley, S.A.; Bates, A.E.; Lamare, M.; Richard, J.; Nguyen, K.D.; Brown, J.; Peck, L.S. (2014). Rates of warming and the global sensitivity of shallow water marine invertebrates to elevated temperature. J. Mar. Biol. Ass. U.K. 96(1): 159-165. https://dx.doi.org/10.1017/s0025315414000307, more
Sarafraz, J.; Rajabizadeh, M.; Kamrani, E. (2016). The preliminary assessment of abundance and composition of marine beach debris in the northern Persian Gulf, Bandar Abbas City, Iran. J. Mar. Biol. Ass. U.K. 96(1): 131-135. https://dx.doi.org/10.1017/s0025315415002076, more
Solo-Gabriele, H.M.; Harwood, V.J.; Kay, D.; Fujioka, R.S.; Sadowsky, M.J.; Whitman, R.L.; Wither, A.; Caniça, M.; Carvalho da Fonseca, R.; Duarte, A.; Edge, T.A.; Gargaté, M.J.; Gunde-Cimerman, N.; Hagen, F.; McLellan, S.L.; Nogueira da Silva, A.; Novak Babic, M.; Prada, S.; Rodrigues, R.; Romão, D.; Sabino, R.; Samson, R.A.; Segal, E.; Staley, C.; Taylor, H.D.; Veríssimo, C.; Viegas, C.; Barroso, H.; Brandão, J.C. (2015). Beach sand and the potential for infectious disease transmission: observations and recommendations. J. Mar. Biol. Ass. U.K. 96(1): 101-120. https://hdl.handle.net/10.1017/s0025315415000843, more
Staley, C.; Sadowsky, M.J. (2015). Application of metagenomics to assess microbial communities in water and other environmental matrices. J. Mar. Biol. Ass. U.K. 96(1): 121-129. https://dx.doi.org/10.1017/s0025315415001496, more
White, M.P.; Pahl, S.; Wheeler, B.W.; Fleming, L.E.F.; Depledge, M.H. (2016). The 'Blue Gym': What can blue space do for you and what can you do for blue space? J. Mar. Biol. Ass. U.K. 96(1): 5-12. https://dx.doi.org/10.1017/s0025315415002209, more
Xu, Q.; Xu, Q.; Zhang, X.; Peng, Q.; Yang, H. (2015). Fatty acid component in sea cucumber Apostichopus japonicus from different tissues and habitats. J. Mar. Biol. Ass. U.K. 96(1): 197-204. https://dx.doi.org/10.1017/s002531541500168x, more
Young, N. (2016). The association between marine bathing and infectious diseases– a review. J. Mar. Biol. Ass. U.K. 96(1): 93-100. https://dx.doi.org/10.1017/s0025315415002003, more
Zhao, C.; Feng, W.; Wei, J.; Zhang, L.; Sun, P.; Chang, Y. (2015). Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius. J. Mar. Biol. Ass. U.K. 96(1): 185-195. https://dx.doi.org/10.1017/s0025315415001617, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Thorndyke, M., editor, more
  • McGowan, F., editor
  • Fleming, L., editor
  • Solo-Gabriele, H., editor

Abstract
    Marine Biology is undergoing a “sea change” in its outlook and approach. Driven by the need for us all to think more about the impact of our work and its relevance to the wider public, the marine sciences are now embracing ideas and establishing closer collaborative links with the Social Sciences – including economics and the law – , and the public health communities. Until recently the primary focus within these latter areas has been on the negative impacts of the oceans and seas on human health – such as extreme weather events, shellfish poisoning and drowning. Conversely, in the marine biology/marine science community attention has traditionally been directed to the many benefits for example, healthy foods and novel drugs as well as some negative environmental impacts (such as red tides). Now, there is increasing recognition that all interactions both global and local between humans and the oceans can have benefits and risks and that the “health” of our seas and oceans is inextricably linked to human health and wellbeing. For example, our marine ecosystems are being destroyed through pollution and unsustainable development, which threatens important potential health-related novel drug and foodstuff discoveries.While most of these interactions can be quantified, those surrounding human health and well being need to be explored using qualitative research methods if we are to truly understand the scope of their short and long term impacts. For example, how can we measure the potentially positive benefits that result from interaction with the coasts and the “blue environment”? Since the Eighteenth century “taking the waters” was considered to be health promoting and this idea contributed to the growth of the medical “thallasotherapy” approach and industry. Now, in the 21st Century, we are seeing the emergence of terms such as the “Blue gym”, coined to describe the sometimes indefinable, or at least difficult to quantify, mental and physical health benefits obtained from experiencing proximity to coastal environments.Supporting this vision, an increasing number of disparate groups are realizing that they too are stakeholders in oceans and human health. This includes residents of rapidly growing coastal cities, the increasing numbers of visitors to seaside locations around the globe and the resulting growth of businesses that serve them such as tourism, aquaculture and fisheries, pharmaceuticals, transport, energy sectors, and non-governmental organizations (e.g. Ocean Conservancy, World Wildlife Fund, Surfrider Foundation, Pew Foundation). The interests of commerce, the wider public, professional bodies and diverse academic disciplines are now converging to develop the field of “Oceans and Human Health”. This new and exciting interdisciplinary theme is celebrated in the latest issue of the JMBA.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors