Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [255273]
Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene
Levy, R.; Schouten, S.; SMS Sci Team (2016). Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proc. Natl. Acad. Sci. U.S.A. 113(13): 3453–3458. dx.doi.org/10.1073/pnas.1516030113

Additional data:
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424; e-ISSN 1091-6490, more
Peer reviewed article  

Available in  Authors 
    NIOZ: NIOZ files 289364

Author keywords
    Antarctica; ice sheet; Climate Optimum; Ross Sea; Miocene

Authors  Top 
  • Levy, R.
  • Schouten, S., more
  • SMS Sci Team

Abstract
    Geological records from the Antarctic margin offer direct evidenceof environmental variability at high southern latitudes and provideinsight regarding ice sheet sensitivity to past climate change.The early to mid-Miocene (23–14 Mya) is a compelling interval tostudy as global temperatures and atmospheric CO2 concentrationswere similar to those projected for coming centuries. Importantly,this time interval includes the Miocene Climatic Optimum, a periodof global warmth during which average surface temperatures were3–4 °C higher than today. Miocene sediments in the ANDRILL-2A drillcore from the Western Ross Sea, Antarctica, indicate that the Antarcticice sheet (AIS) was highly variable through this key time interval.A multiproxy dataset derived from the core identifies four distinctenvironmental motifs based on changes in sedimentary facies, fossilassemblages, geochemistry, and paleotemperature. Four major disconformitiesin the drill core coincide with regional seismic discontinuitiesand reflect transient expansion of grounded ice across theRoss Sea. They correlate with major positive shifts in benthic oxygenisotope records and generally coincide with intervals when atmosphericCO2 concentrations were at or below preindustrial levels(~280 ppm). Five intervals reflect ice sheet minima and air temperatureswarm enough for substantial ice mass loss during episodes ofhigh (~500 ppm) atmospheric CO2. These new drill core data andassociated ice sheet modeling experiments indicate that polar climateand the AIS were highly sensitive to relatively small changes in atmosphericCO2 during the early to mid-Miocene.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors