Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [257327]
Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from the rigidin family of marine alkaloids
Frolova, L.; Magedov, I.; Romero, A.; Karki, M.; Otero, I.; Hayden, K.; Evdokimov, N.; Banuls, L.M.Y.; Rastogi, S.; Smith, W.; Lu, S.; Kiss, R.; Shuster, C.; Hamel, E.; Betancourt, T.; Rogelj, S.; Kornienko, A. (2013). Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from the rigidin family of marine alkaloids. J. Med. Chem. 56(17): 6886-6900. https://dx.doi.org/10.1021/jm400711t
In: Journal of Medicinal Chemistry. American Chemical Society: Easton. ISSN 0022-2623; e-ISSN 1520-4804, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Frolova, L.
  • Magedov, I.
  • Romero, A.
  • Karki, M.
  • Otero, I.
  • Hayden, K.
  • Evdokimov, N.
  • Banuls, L.M.Y.
  • Rastogi, S.
  • Smith, W.
  • Lu, S.
  • Kiss, R., more
  • Shuster, C.
  • Hamel, E.
  • Betancourt, T.
  • Rogelj, S.
  • Kornienko, A.

Abstract
    We developed synthetic chemistry to access the marine alkaloid rigidins and over 40 synthetic analogues based on the 7-deazaxanthine, 7-deazaadenine, 7-deazapurine, and 7-deazahypoxanthine skeletons. Analogues based on the 7-deazahypoxanthine skeleton exhibited nanomolar potencies against cell lines representing cancers with dismal prognoses, tumor metastases, and multidrug resistant cells. Studies aimed at elucidating the mode(s) of action of the 7-deazahypoxanthines in cancer cells revealed that they inhibited in vitro tubulin polymerization and disorganized microtubules in live HeLa cells. Experiments evaluating the effects of the 7-deazahypoxanthines on the binding of [H-3]colchicine to tubulin identified the colchicine site on tubulin as the most likely target for these compounds in cancer cells. Because many microtubule-targeting compounds are successfully used to fight cancer in the clinic, we believe the new chemical class of antitubulin agents represented by the 7-deazahypoxanthine rigidin analogues have significant potential as new anticancer agents.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors