one publication added to basket [257971] | European tidal gravity observations: comparison with earth tide models and estimation of the Free Core Nutation (FCN) parameters
Ducarme, B.; Rosat, S.; Vandercoilden, L.; Jian-Qiao, X.; Sun, H. (2009). European tidal gravity observations: comparison with earth tide models and estimation of the Free Core Nutation (FCN) parameters, in: Sideris, M.G. (Ed.) Observing our Changing Earth. International Association of Geodesy Symposia, 133: pp. 523-532. https://dx.doi.org/10.1007/978-3-540-85426-5_62 In: Sideris, M.G. (Ed.) (2009). Observing our Changing Earth. International Association of Geodesy Symposia, 133. Springer Berlin: Heidelberg. ISBN 978-3-540-85425-8; e-ISBN 978-3-540-85426-5. XV, 864 pp. https://dx.doi.org/10.1007/978-3-540-85426-5, more In: International Association of Geodesy Symposia. Springer: Heidelberg; Berlin. ISSN 0939-9585; e-ISSN 2197-9359, more | |
Available in | Authors | | Document type: Conference paper
|
Keyword | | Author keywords | Tidal gravity observations; Global Geodynamics Project (GGP); Tidalgravity models; Free Core Nutation (FCN) |
Authors | | Top | - Ducarme, B., more
- Rosat, S., more
- Vandercoilden, L.
| | |
Abstract | The data of sixteen West European tidal gravity stations have been reprocessed. The tidal gravity factors have been corrected for ocean loading effect using the mean of 9 different ocean tides models with different grid size (0.5°, 0.25° and 0.125°). For the principal tidal waves O1 and M2 the standard deviation of the corrected amplitude factors dc is lower than 0.1%. For O1 the value dc = 1.15340 ± 0.00023 lies between the Dehant, Defraigne and Wahr, 1999 (DDW99) elastic model and the Mathews, 2001 (MAT01) inelastic model. For M2 the value dc = 1.16211 ± 0.00020 fits very well the DDW99 and the MAT01 inelastic models. For K1 the mean result dc = 1.13525 ± 0.00032 (7 Global Geodynamics Project stations and Pecny) fits the MAT01 model to better than 0.05%. We determine the FCN parameters using either generalized least-squares or a Bayesian approach and find values between 428 and 432 sidereal days for the eigenperiod and quality factor Q values around 15,000. |
|