Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [258618]
Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale
van de Water, J.A.J.M.; Melkonian, R.; Junca, H.; Voolstra, C.R.; Reynaud, S.; Allemand, D.; Ferrier-Pagès, C. (2016). Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. NPG Scientific Reports 6(27277): 7 pp. http://dx.doi.org/10.1038/srep27277
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors | Dataset 

Keywords
    Corallium rubrum (Linnaeus, 1758) [WoRMS]
    Marine/Coastal

Authors  Top | Dataset 
  • van de Water, J.A.J.M.
  • Melkonian, R.
  • Junca, H.
  • Voolstra, C.R.
  • Reynaud, S.
  • Allemand, D.
  • Ferrier-Pagès, C.

Abstract
    Mass mortality events in populations of the iconic red coral Corallium rubrum have been related to seawater temperature anomalies that may have triggered microbial disease development. However, very little is known about the bacterial community associated with the red coral. We therefore aimed to provide insight into this species’ bacterial assemblages using Illumina MiSeq sequencing of 16S rRNA gene amplicons generated from samples collected at five locations distributed across the western Mediterranean Sea. Twelve bacterial species were found to be consistently associated with the red coral, forming a core microbiome that accounted for 94.6% of the overall bacterial community. This core microbiome was particularly dominated by bacteria of the orders Spirochaetales and Oceanospirillales, in particular the ME2 family. Bacteria belonging to these orders have been implicated in nutrient cycling, including nitrogen, carbon and sulfur. While Oceanospirillales are common symbionts of marine invertebrates, our results identify members of the Spirochaetales as other important dominant symbiotic bacterial associates within Anthozoans.

Dataset
  • Linares, Cristina; Figuerola, Laura; Gómez-Gras, Daniel; Pagès-Escolà, Marta; Olvera, Àngela, Aubach, Àlex; Amate, Roger; Figuerola, Blanca; Kersting, Diego; Ledoux, Jean-Baptiste; López-Sanz, Àngel; López-Sendino, Paula; Medrano, Alba; Garrabou, Joaquim; (2020); CorMedNet- Distribution and demographic data of habitat-forming invertebrate species from Mediterranean coralligenous assemblages between 1882 and 2019, more

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Dataset