Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [26689]
Pools of chlorophyll and live planktonic diatoms in aphotic marine sediments
Hansen, J.L.S.; Josefson, A.B. (2001). Pools of chlorophyll and live planktonic diatoms in aphotic marine sediments. Mar. Biol. (Berl.) 139(2): 289-299
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Keywords
    Aggregation
    Algae > Diatoms
    Aphotic zone
    Organic compounds > Carbohydrates > Glycosides > Pigments > Photosynthetic pigments > Chlorophylls
    Population functions > Growth
    Sea
    Sedimentation
    Chaetoceros C.G. Ehrenberg, 1844 [WoRMS]; Skeletonema R.K. Greville, 1865 [WoRMS]; Thalassiosira P.T. Cleve, 1873 emend. Hasle, 1973 [WoRMS]
    Marine/Coastal

Authors  Top 
  • Hansen, J.L.S.
  • Josefson, A.B., more

Abstract
    Chlorophyll a and numbers of live pelagic diatoms were recorded from sediment depth profiles at 11 stations in the oligotrophic Oresund, Denmark, in late June. Extraction efficiency of chlorophyll a analysed fluorometrically did not differ significantly between paired samples of frozen-thawed and fresh sediment. The depth profiles of chlorophyll a could be explained by a diagenetic model involving two different chlorophyll pools: one reactive pool declining exponentially with core depth, and one non-reactive pool of about 1 µg Chl ml-1 wet sediment, being constant with depth. The number of live diatoms, quantified by the dilution-extinction method, and expressed in terms of most probable number (MPN). declined from an average of about 300,000 g-1 in the surface sediment to zero values at a depth of 13 cm. The number of live cells was significantly correlated with the sediment chlorophyll a, and the profiles of live cells as well as reactive chlorophyll followed the same exponential decline with core depth, suggesting that the main source of chlorophyll in the sediment was live pelagic diatoms. Taxonomic composition of diatoms in the sediment, dominated by the pelagic genera Chaetoceros, Thalassiosira and Skeletonema, matched the species composition in the water column 3 months earlier during the spring bloom. Regular recordings of the phytoplankton community in the water column showed that only these specific bloom species could be the source of the sediment content of diatoms and chlorophyll a. Further, the ratios between live cells and chlorophyll a were similar in the sediment and in the spring bloom. A conservative estimate of depth-integrated pools of diatoms in the sediment suggested that about 44% of the total phytoplankton biomass during the spring bloom was still present as live cells in the sediment after 3 months. This indicates that the spring bloom input to the sediment is not degraded immediately by the benthic fauna.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors