Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [27477]
Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio)
Best, J.H.; Pflugmacher, S.; Wiegand, C.; Eddy, F.B.; Metcalf, J.S.; Codd, G.A. (2002). Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquat. Toxicol. 60(3-4): 223-231. https://dx.doi.org/10.1016/S0166-445X(02)00010-3
In: Aquatic Toxicology. Elsevier Science: Tokyo; New York; London; Amsterdam. ISSN 0166-445X; e-ISSN 1879-1514, more
Peer reviewed article  

Keywords
    Microorganisms > Bacteria
    Danio rerio (Hamilton, 1822) [WoRMS]; Escherichia coli Castellani & Chalmers, 1919 [WoRMS]; Gloeotrichia J.Agardh ex Bornet & Flahault, 1886 [WoRMS]; Microcystis Lemmermann, 1907 [WoRMS]; Salmonella typhimurium
    Fresh water

Authors  Top 
  • Best, J.H.
  • Pflugmacher, S.
  • Wiegand, C.
  • Eddy, F.B.
  • Metcalf, J.S.
  • Codd, G.A., more

Abstract
    Cyanobacteria (blue-green algae) can produce a variety of toxins including hepatotoxins e.g. microcystins, and endotoxins such as lipopolysaccharides (LPS). The combined effects of such toxins on fish are little known. This study examines the activities of microsomal (m) and soluble (s) glutathione S-transferases (GST) from embryos of the zebra fish, Danio rerio at the prim six embryo stage, which had been exposed since fertilisation to LPS from different sources. A further aim was to see how activity was affected by co-exposure to LPS and microcystin-LR (MC-LR). LPS were obtained from Salmonella typhimurium, Escherichia coli, a laboratory culture of Microcystis CYA 43 and natural cyanobacterial blooms of Microcystis and Gloeotrichia. Following in vivo exposure of embryos to each of the LPS preparations, mGST activity was significantly reduced (from 0.50 to between 0.06 and 0.32 nanokatals per milligram (nkat mg-1) protein). sGST activity in vivo was significantly reduced (from 1.05 to between 0.19 and 0.22 nkat mg-1 protein) after exposure of embryos to each of the cyanobacterial LPS preparations, but not in response to S. typhimurium or E. coli LPS. Activities of both m- and sGSTs were reduced after co-exposure to MC-LR and cyanobacterial LPS, but only mGST activity was reduced in the S. typhimurium and E. coli LPS-treated embryos. In vitro preparations of GST from adult and prim six embryo D. rerio showed no significant changes in enzyme activity in response to the LPS preparations with the exception of Gloeotrichia bloom LPS, where mGST was reduced in adult and embryo preparations. The present study represents the first investigations into the effects of cyanobacterial LPS on the phase-II microcystin detoxication mechanism. LPS preparations, whether from axenic cyanobacteria or cyanobacterial blooms, are potentially capable of significantly reducing activity of both the s- and mGSTs, so reducing the capacity of D. rerio to detoxicate microcystins. The results presented here have wide ranging implications for both animal and human health.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors