Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [280978]
Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas
Van Trappen, S.; Tan, T.-L.; Yang, J.; Mergaert, J.; Swings, J. (2004). Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int. J. Syst. Evol. Microbiol. 54: 1157-1163. dx.doi.org/10.1099/ijs.0.02862-0
In: International Journal of Systematic and Evolutionary Microbiology. Society for General Microbiology: Reading. ISSN 1466-5026; e-ISSN 1466-5034, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Van Trappen, S., more
  • Tan, T.-L.
  • Yang, J.

Abstract
    Seven novel, cold-adapted, strictly aerobic, facultatively oligotrophic strains, isolated from Antarctic sea water, were investigated by using a polyphasic taxonomic approach. The isolates were Gram-negative, chemoheterotrophic, motile, rod-shaped cells that were psychrotolerant and moderately halophilic. Buds were produced on mother and daughter cells and on prosthecae. Prostheca formation was peritrichous and prosthecae could be branched. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains belong to the γ-Proteobacteria and are related to the genus Alteromonas, with 98·3 % sequence similarity to Alteromonas macleodii and 98·0 % to Alteromonas marina, their nearest phylogenetic neighbours. Whole-cell fatty acid profiles of the isolates were very similar and included C16 : 0, C16 : 1 ω7c, C17 : 1 ω8c and C18 : 1 ω8c as the major fatty acid components. These results support the affiliation of these isolates to the genus Alteromonas. DNA–DNA hybridization results and differences in phenotypic characteristics show that the strains represent a novel species with a DNA G+C content of 43–45 mol%. The name Alteromonas stellipolaris sp. nov. is proposed for this novel species; the type strain is ANT 69aT (=LMG 21861T=DSM 15691T). An emended description of the genus Alteromonas is given.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors