Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [289354]
Chronic stress and disease resistance in the genome model marine seaweed Ectocarpus siliculosus
Zambounis, A.; Strittmatter, M.; Gachon, C.M.M. (2013). Chronic stress and disease resistance in the genome model marine seaweed Ectocarpus siliculosus. Aquat. Bot. 104: 147-152. https://dx.doi.org/10.1016/j.aquabot.2012.07.008
In: Aquatic Botany. Elsevier Science: Tokyo; Oxford; New York; London; Amsterdam. ISSN 0304-3770; e-ISSN 1879-1522, more
Peer reviewed article  

Available in  Authors 

Keywords
    Marine Sciences
    Marine Sciences > Marine Genomics
    Scientific Community
    Scientific Publication
    Marine/Coastal
Author keywords
    Brown alga; Chronic stress; Ectocarpus siliculosus; Polyunsaturatedfatty acid; Eurychasma dicksonii; Immunity; Induced resistance

Project Top | Authors 
  • Association of European marine biological laboratories, more

Authors  Top 
  • Zambounis, A.
  • Strittmatter, M.
  • Gachon, C.M.M.

Abstract
    In order to test the capacity of the genome model seaweed Ectocarpus siliculosus to acquire disease resistance, plantlets were repeatedly treated with the polyunsaturated fatty acids (PUFAs) linolenic and arachidonic acid in conditions known to increase the resistance of the kelp Laminaria digitate against the endophytic parasite Laminariocolax tomentosoides. Hydrogen peroxide, a well documented inducer of antioxidative defenses, was also applied as a positive control. Real-time PCR transcriptional profiling revealed an induction of a vanadium-bromoperoxidase, a heat-shock protein, a glutaredoxin and a glutathione S transferase, suggesting a transcriptional remodelling during chronic stress. We further assessed the resistance of E. siliculosus against the oomycete pathogen Eurychasma dicksonii following repeated exposure to arachidonic and linolenic acids. In contrast to observations made on L. digitate, we did not evidence any significant change in resistance compared to mock-treated control E. siliculosus. Altogether, our observations imply that E. siliculosus does react transcriptionally to chronic PUFA exposure. However, these inducible defenses may not be as potent as the ones of L. digitate, or they might be efficiently bypassed by Eu. dicksonii.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors