Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [296138]
Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts
Mahowald, N.; Jickells, T.D.; Baker, A.R.; Artaxo, P.; Benitez-Nelson, C.R.; Bergametti, G.; Bond, T.C.; Chen, Y.; Cohen, D.D.; Herut, B.; Kubilay, N.; Losno, R.; Luo, C.; Maenhaut, W.; McGee, K.A.; Okin, G.S.; Siefert, R.L.; Tsukuda, S. (2008). Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem. Cycles 22(4): 19. https://dx.doi.org/10.1029/2008GB003240
In: Global Biogeochemical Cycles. American Geophysical Union: Washington, DC. ISSN 0886-6236; e-ISSN 1944-9224, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Mahowald, N.
  • Jickells, T.D.
  • Baker, A.R.
  • Artaxo, P.
  • Benitez-Nelson, C.R.
  • Bergametti, G.
  • Bond, T.C.
  • Chen, Y.
  • Cohen, D.D.
  • Herut, B.
  • Kubilay, N.
  • Losno, R.
  • Luo, C.
  • Maenhaut, W., more
  • McGee, K.A.
  • Okin, G.S.
  • Siefert, R.L.
  • Tsukuda, S.

Abstract
    A worldwide compilation of atmospheric total phosphorus (TP) and phosphate (PO4) concentration and deposition flux observations are combined with transport model simulations to derive the global distribution of concentrations and deposition fluxes of TP and PO4. Our results suggest that mineral aerosols are the dominant source of TP on a global scale (82%), with primary biogenic particles (12%) and combustion sources (5%) important in nondusty regions. Globally averaged anthropogenic inputs are estimated to be ∼5 and 15% for TP and PO4, respectively, and may contribute as much as 50% to the deposition over the oligotrophic ocean where productivity may be phosphorus‐limited. There is a net loss of TP from many (but not all) land ecosystems and a net gain of TP by the oceans (560 Gg P a−1). More measurements of atmospheric TP and PO4 will assist in reducing uncertainties in our understanding of the role that atmospheric phosphorus may play in global biogeochemistry.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors