Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [304263]
Metabolism and occurrence of methanogenic and sulfate-reducing syntrophic acetate oxidizing communities in haloalkaline environments
Timmers, P.H.A.; Vavourakis, C.D.; Kleerebezem, R.; Sinninghe Damsté, J.S; Muyzer, G.; Stams, A.J.M.; Sorokin, D.Y.; Plugge, C.M. (2018). Metabolism and occurrence of methanogenic and sulfate-reducing syntrophic acetate oxidizing communities in haloalkaline environments. Front. Microbiol. 9(3039). https://dx.doi.org/10.3389/fmicb.2018.03039
In: Frontiers in Microbiology. Frontiers Media: Lausanne. ISSN 1664-302X; e-ISSN 1664-302X, more
Peer reviewed article  

Available in  Authors 

Author keywords
    syntrophic acetate oxidation; haloalkaliphiles; soda lakes; syntrophy; SAOB; syntrophic acetate oxidizing bacteria; genome-centric metagenomics

Authors  Top 
  • Timmers, P.H.A.
  • Vavourakis, C.D.
  • Kleerebezem, R.
  • Sinninghe Damsté, J.S, more
  • Muyzer, G., more
  • Stams, A.J.M.
  • Sorokin, D.Y.
  • Plugge, C.M.

Abstract
    Anaerobic syntrophic acetate oxidation (SAO) is a thermodynamically unfavorable process involving a syntrophic acetate oxidizing bacterium (SAOB) that forms interspecies electron carriers (IECs). These IECs are consumed by syntrophic partners, typically hydrogenotrophic methanogenic archaea or sulfate reducing bacteria. In this work, the metabolism and occurrence of SAOB at extremely haloalkaline conditions were investigated, using highly enriched methanogenic (M-SAO) and sulfate-reducing (S-SAO) cultures from south-western Siberian hypersaline soda lakes. Activity tests with the M-SAO and S-SAO cultures and thermodynamic calculations indicated that H2 and formate are important IECs in both SAO cultures. Metagenomic analysis of the M-SAO cultures showed that the dominant SAOB was ‘Candidatus Syntrophonatronum acetioxidans,’ and a near-complete draft genome of this SAOB was reconstructed. ‘Ca. S. acetioxidans’ has all genes necessary for operating the Wood–Ljungdahl pathway, which is likely employed for acetate oxidation. It also encodes several genes essential to thrive at haloalkaline conditions; including a Na+-dependent ATP synthase and marker genes for ‘salt-out‘ strategies for osmotic homeostasis at high soda conditions. Membrane lipid analysis of the M-SAO culture showed the presence of unusual bacterial diether membrane lipids which are presumably beneficial at extreme haloalkaline conditions. To determine the importance of SAO in haloalkaline environments, previously obtained 16S rRNA gene sequencing data and metagenomic data of five different hypersaline soda lake sediment samples were investigated, including the soda lakes where the enrichment cultures originated from. The draft genome of ‘Ca. S. acetioxidans’ showed highest identity with two metagenome-assembled genomes (MAGs) of putative SAOBs that belonged to the highly abundant and diverse Syntrophomonadaceae family present in the soda lake sediments. The 16S rRNA gene amplicon datasets of the soda lake sediments showed a high similarity of reads to ‘Ca. S. acetioxidans’ with abundance as high as 1.3% of all reads, whereas aceticlastic methanogens and acetate oxidizing sulfate-reducers were not abundant (≤0.1%) or could not be detected. These combined results indicate that SAO is the primary anaerobic acetate oxidizing pathway at extreme haloalkaline conditions performed by haloalkaliphilic syntrophic consortia.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors