Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [305774]
Uptake kinetics and storage capacity of dissolved inorganic phosphorus and corresponding dissolved inorganic nitrate uptake in Saccharina latissima and Laminaria digitata (Phaeophyceae)
Timmermans, K.R.; Lubsch, A. (2019). Uptake kinetics and storage capacity of dissolved inorganic phosphorus and corresponding dissolved inorganic nitrate uptake in Saccharina latissima and Laminaria digitata (Phaeophyceae). J. Phycol. 55(3): 637-650. https://dx.doi.org/10.1111/jpy.12844

Additional data:
In: Journal of Phycology. Blackwell Science: New York. ISSN 0022-3646; e-ISSN 1529-8817, more
Peer reviewed article  

Available in  Authors 

Authors  Top 

Abstract
    Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissimi and Laminaria digitate (Phaeophyceae) using a ‘pulse‐and‐chase’ assay under fully controlled laboratory conditions. In a subsequent second ‘pulse‐and‐chase’ assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissimi showed a VS of 0.80±0.03 μmol · cm-2 · d-1 and a VM of 0.30±0.09 μmol · cm-2 · d-1 for DIP, while VS for DIN was 11.26±0.56 μmol · cm-2 · d-1 and VM was 3.94±0.67 μmol · cm2 · d-1 . In Laminaria digitate, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38±0.03 μmol·cm−2·d-1 while VM for DIP was 0.22±0.01 μmol· cm-2 · d-1 . VS for DIN was 3.92±0.08 μmol · cm2 · d-1 and the VM for DIN was 1.81±0.38 μmol · cm2 · d-1 . Accordingly, S. latissimi exhibited a larger ISC for DIP (27 μmol · cm-2) than L. digitate (10 μmol · cm-2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissimi and L. digitate, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example in evaluating the potential for bioremediation in integrated multi‐trophic aquacultures (IMTA) that produce biomass simultaneously for use in the food, feed and energy industries.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors