Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [307910]
Modelling integrated multi-trophic aquaculture: optimizing a three trophic level system
Granada, L.; Lopes, S.; Novais, S.C.; Lemos, M.F.L. (2018). Modelling integrated multi-trophic aquaculture: optimizing a three trophic level system. Aquaculture 495: 90-97. https://dx.doi.org/10.1016/j.aquaculture.2018.05.029
In: Aquaculture. Elsevier: Amsterdam; London; New York; Oxford; Tokyo. ISSN 0044-8486; e-ISSN 1873-5622, more
Peer reviewed article  

Available in  Authors 

Author keywords
    IMTA; Mathematical modelling; Recirculating aquaculture system;Sustainability

Authors  Top 
  • Granada, L., more
  • Lopes, S.
  • Novais, S.C.
  • Lemos, M.F.L.

Abstract
    As a fast-growing food production industry, aquaculture is dealing with the need for intensification due to the global increasing demand for fish products. However, this also implies the use of more sustainable practices to reduce negative environmental impacts currently associated with this industry, including the use of wild resources, destruction of natural ecosystems, eutrophication of effluent receiving bodies, impacts due to inadequate medication practices, among others. Using multi-species systems, such as integrated multi-trophic aquaculture, allows to produce economically important species while reducing some of these aquaculture concerns, through biomitigation of aquaculture wastes and reduction of diseases outbreaks, for example. Applying mathematical models to these systems is crucial to control and understand the interactions between species, maximizing productivity, with important environmental and economic benefits. Here, the application of some equations and models available in the literature, regarding basic parameters, is discussed - population dynamics, growth, waste production, and filtering rate - when considering the description and optimization of a theoretical integrated multi-trophic aquaculture operation composed by three trophic levels.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors