Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [311569]
Responses of summer phytoplankton biomass to changes in top-down forcing: insights from comparative modelling
Maar, M.; Butenschön, M.; Daewel, U.; Eggert, A.; Fan, W.; Hjøllo, S.; Hufnagl, M.; Huret, M.; Ji, R.; Lacroix, G.; Peck, M.A.; Radtke, H.; Sailley, S.; Sinerchia, M.; Skogen, M.D.; Travers-Trolet, M.; Troost, T.A.; van de Wolfshaar, K. (2018). Responses of summer phytoplankton biomass to changes in top-down forcing: insights from comparative modelling. Ecol. Model. 376: 54-67. https://dx.doi.org/10.1016/j.ecolmodel.2018.03.003
In: Ecological Modelling. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0304-3800; e-ISSN 1872-7026, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Plankton functional types; Trophic cascades; Zooplankton mortality;Phytoplankton; Ensemble modelling

Authors  Top 
  • Maar, M.
  • Butenschön, M.
  • Daewel, U.
  • Eggert, A.
  • Fan, W.
  • Hjøllo, S.
  • Hufnagl, M.
  • Huret, M.
  • Ji, R.
  • Lacroix, G., more
  • Peck, M.A.
  • Radtke, H.
  • Sailley, S.
  • Sinerchia, M.
  • Skogen, M.D.
  • Travers-Trolet, M.
  • Troost, T.A.
  • van de Wolfshaar, K.

Abstract
    The present study describes the responses of summer phytoplankton biomass to changes in top-down forcing (expressed as zooplankton mortality) in three ecosystems (the North Sea, the Baltic Sea and the Nordic Seas) across different 3D ecosystem models. In each of the model set-ups, we applied the same changes in the magnitude of mortality ( +/- 20%) of the highest trophic zooplankton level (Z1). Model results showed overall dampened responses of phytoplankton relative to Z1 biomass. Phytoplankton responses varied depending on the food web structure and trophic coupling represented in the models. Hence, a priori model assumptions were found to influence cascades and pathways in model estimates and, thus, become highly relevant when examining ecosystem pressures such as fishing and climate change. Especially, the different roles and parameterizations of additional zooplankton groups grazed by Z1, and their importance for the outcome, emphasized the need for better calibration data. Spatial variability was high within each model indicating that physics (hydrodynamics and temperature) and nutrient dynamics also play vital roles for ecosystem responses to top-down effects. In conclusion, the model comparison indicated that changes in top-down forcing in combination with the modelled food-web structure affect summer phytoplankton biomass and, thereby, indirectly influence water quality of the systems.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors