one publication added to basket [3190] | Size and phytoplankton selection by Oosterschelde zooplankton
Tackx, M.L.M.; Bakker, C.; Francke, J.W.; Vink, M. (1989). Size and phytoplankton selection by Oosterschelde zooplankton. Neth. J. Sea Res. 23(1): 35-43 In: Netherlands Journal of Sea Research. Netherlands Institute for Sea Research (NIOZ): Groningen; Den Burg. ISSN 0077-7579; e-ISSN 1873-1406, more | |
Keywords | Aquatic communities > Plankton > Zooplankton ANE, Netherlands, Oosterschelde [Marine Regions] Marine/Coastal |
Authors | | Top | - Tackx, M.L.M., more
- Bakker, C.
- Francke, J.W.
- Vink, M.
| | |
Abstract | Grazing of adults of the copepods Acartia spp., Temora longicornis, Centropages hamatus and nauplii of Balanus spp. on natural particulate matter from the Oosterschelde was studied using a Coulter counter. Two types of particulate matter distributions were found to occur in the Oosterschelde: 1. distributions with distinct peaks in the >20 µm size range (A) and 2. more flattened distributions which were bell-shapened or contained multiple small peaks spread over the entire 4-100 µm size range (B). In A-type distributions, peak tracking was performed in all species studied, especially in Acartia spp. and T. longicornis. In B-type distributions, the animals tended to spread their grazing activity towards the smaller particles. Quantitative microscopial analysis of the phytoplankton distributions shows that A- and B-type distributions were caused by the presence (A) or absence (B) of blooms of phytoplankton species with an SED of >20 µm, reaching concentrations of >1,40·106 µm³·cm-3. The demonstrated clearance rate distributions are shown to result in a concentration of phytoplankton in the ingested material as compared to the medium for all copepod species studied. Balanus spp. nauplii did not demonstrate this systematic selection of phytoplankton. When B-distributions occurred, only Acartia spp. switched its feeding activity towards smaller particles to such a degree that a substantial contribution of the <20 µm size range to the ingested material resulted. Whether this behaviour represents a higher selection capacity for small phytoplankton species or a detritivorous behaviour remains an open question. |
|