one publication added to basket [322807] | Salt marsh establishment and eco-engineering effects in dynamic estuaries determined by species growth and mortality
Brückner, M.Z.M.; Schwarz, C.; van Dijk, W.M.; van Oorschot, M.; Douma, H.; Kleinhans, M.G. (2019). Salt marsh establishment and eco-engineering effects in dynamic estuaries determined by species growth and mortality. JGR: Earth Surface 124(12): 2962-2986. https://dx.doi.org/10.1029/2019JF005092 In: Journal of Geophysical Research-Earth Surface. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9003; e-ISSN 2169-9011, more | |
Keywords | Marine/Coastal; Brackish water; Fresh water | Author keywords | salt marsh; dynamic vegetation modeling; estuarine morphology;eco-engineering effects |
Authors | | Top | - Brückner, M.Z.M.
- Schwarz, C., more
- van Dijk, W.M.
| - van Oorschot, M.
- Douma, H.
- Kleinhans, M.G., more
| |
Abstract | Growth conditions and eco-engineering effects of vegetation on local conditions in coastal environments have been extensively studied. However, interactions between salt marsh settling, growth, and mortality as a function of hydromorphology and eco-engineering lack sufficient understanding to forecast morphological development of dynamic systems. We predict salt marsh establishment with an ecomorphodynamic model that accounts for literature-based seasonal settling and life-stage-dependent growth and mortality of a generic salt marsh species. The model was coupled to a calibrated hydromorphodynamic model of an intertidal bar and, on a coarser grid, to the entire Western Scheldt estuary. To quantify the importance of eco-engineering effects we compared the dynamic model results to a static model approach. The ecomorphodynamic model reproduces spatial pattern, cover, and growth trends over 15 years. The modeled vegetation cover emerges from the combination of a positive and a new negative eco-engineering effect: vegetation reduces tidal flow strength facilitating plant survival while the developing salt marsh increases the hydroperiod, which limits large-scale marsh expansion. The reproduced spatial gradient in vegetation density by our model is strongly correlated to their life-stages, which underlines the importance of age-dependence when modeling vegetation and for predictions of the stability of the marsh. Upscaling of the model to the entire estuary on a coarser grid gives implications for grid size-dependent modeling of hydrodynamics and vegetation. In comparison with static model results, the eco-engineering effects reduce vegetation cover, showing the importance of vegetation dynamics for predictions of salt marsh growth. |
|