Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [322819]
Niche separation between different functional types of mixoplankton: results from NPZ-style N-based model simulations
Anschütz, A.-A.; Flynn, K.J. (2019). Niche separation between different functional types of mixoplankton: results from NPZ-style N-based model simulations. Mar. Biol. (Berl.) 167(1): 3. https://dx.doi.org/10.1007/s00227-019-3612-3
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Anschütz, A.-A., more
  • Flynn, K.J.

Abstract
    Protist plankton comprise phytoplankton (incapable of phagotrophy), protozooplankton (incapable of phototrophy) and mixoplankton (capable of phototrophy and phagotrophy). Of these, only phytoplankton and zooplankton are typically described in models. Over the last decade, however, the importance of mixoplankton across all marine biomes has risen to prominence. We thus need descriptions of mixoplankton within marine models. Here we present a simple yet flexible N-based model describing any one of the five basic patterns of protist plankton: phytoplankton, protozooplankton, and the three functional groups of mixoplankton: general non-constitutive mixoplankton (GNCM), specialist non-constitutive mixoplankton (SNCM), and constitutive mixoplankton (CM). By manipulation of a few input switch values, the same model can be used to describe any of these patterns, while adjustment of salient features, such as the percent of C-fixation required for mixotrophic growth, and the rate of phototrophic prey ingestion required to enable growth of GNCM and SNCM types, readily provides fine tuning. Example outputs are presented showing how the performance of these different protist configurations accords with expectations (set against empirical evidence). Simulations demonstrate clear niche separations between these protist functional groups according to nutrient, prey and light resource availabilities. This addition to classic NPZ plankton models provides for the exploration of the implications of mixoplankton activity in a simple yet robust fashion.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors